共查询到20条相似文献,搜索用时 46 毫秒
1.
针对传统混合高斯背景模型在多变场景下因背景模型更新不及时而存在的误检、漏检等不足,提出一种改进算法.该算法首先通过在高斯分布匹配过程中结合帧间差分获取的帧间未变化区域与变化区域判断像素点的区域类别,然后根据不同的像素区域类别执行不同的背景更新策略,使背景的更新及时准确地反映背景的变化.实验结果表明,该改进混合高斯背景模型算法能有效地解决因目标和背景相互转化而出现的拖尾、影子以及运动目标空洞等问题. 相似文献
2.
一种改进运动目标检测算法的研究与应用 总被引:1,自引:0,他引:1
针对运动目标检测中场景的混乱多变和干扰的复杂多样的问题,提出了一种鲁棒而有效的运动目标检测方法。通过对混合高斯模型的匹配准则和背景模型学习更新方法进行改进,使背景模型的可靠性和收敛速度得到了有效的提高。根据各种干扰的特点,分别实现了光照变化、物体的移入移出的干扰检测和排除。实验结果证明,本文提出运动目标检测算法具有较好的实时性和鲁棒性。 相似文献
3.
4.
室内环境中光照、背景等变化虽然不如外界自然环境那么复杂,但是它们对于运动物体的检测也将产生显著影响。归类分析了室内照明条件与背景变化的不同类型,以及它们对于运动目标检测的影响,在此基础上提出一种能够较好适应室内环境变化的运动目标检测混合算法。该算法结合了帧间差分与背景模型算法的优点,同时引入亮度信息进行前序的处理;因此算法针对不同室内环境都具有较高的鲁棒性。通过仿真实验,证明了该算法的实时性与可靠性。 相似文献
5.
介绍了在视觉监控领域经常用到的几种基于自适应背景模型的经典方法,如非参数模型、单高斯模型和混合高斯模型等。通过试验,比较了上述方法在检测过程中的优势和不足之处,以其在工程实践中有一定的参考作用。 相似文献
6.
介绍了在视觉监控领域经常用到的几种基于自适应背蒂模型的经典方法,如非参数模型、单高斯模型和混合高斯模型等。通过试验.比较了上述方法在检测过程中的优势和不足之处,以其在工程实践中有一定的参考作用。 相似文献
7.
一种基于背景模型的运动目标检测与跟踪算法 总被引:74,自引:0,他引:74
本文提出了一种静止摄像机条件下的运动目标检测与跟踪算法.它以一种改进的自适应混合
高斯模型为背景更新方法,用连通区检测算法分割出前景目标,以Kalman滤波为运动模型实
现对运动目标的连续跟踪.在目标跟踪时,该算法针对目标遮挡引起的各种可能情况进行了
分析,引入了对运动目标的可靠性度量,增强了目标跟踪的稳定性和可靠性.在对多个室外
视频序列的实验中,该算法显示了良好的性能,说明它对于各种外部因素的影响,如光照变
化、阴影、目标遮挡等,具有很强的适应能力. 相似文献
8.
高斯混合模型被广泛应用于摄像机静止条件下运动目标检测的背景建模。针对传统高斯混合模型中对光照变化适应性差及学习率单一等问题, 提出了一种光照变化检测及学习率更新的方法, 以达到自适应更新背景模型的目的。提出利用颜色直方图匹配算法, 通过引入光照变化因子以及模型参数更新计数器对学习率进行自适应的调整, 并通过对描述模型分量个数的自适应选择减少了计算时间, 增强了系统的实时性。实验结果表明, 该方法能快速有效地适应场景的变化, 比传统高斯混合模型具有更好的鲁棒性与稳定性。 相似文献
9.
将运动目标检测的改进方式分为三类。针对固定摄像机的视觉监控系统,提出了一种改进的高斯混合模型算法。通过对方差在高斯混合模型中的作用进行分析,省略方差更新,将方差设为固定值,均值学习率采用固定值。实验结果表明,同传统检测方法相比,改进的算法具有更好的实时性与可靠性。 相似文献
10.
11.
视频监控中一种完整提取运动目标的检测算法 总被引:2,自引:0,他引:2
提出一种视频监控中完整、精确提取运动目标前景的检测算法.首先对彩色图像建立混合高斯模型,由背景差分法得到基本准确的前景图像;然后和对称差分法图像综合,得到完整可靠的运动目标图像;再利用亮度信息消除运动目标阴影;最后利用形态学滤波和连通区域面积检测进行后处理.实验结果表明,该算法检测的运动目标前景信息完整准确,对固定场景下的视频监控系统具有一定实用价值. 相似文献
12.
运动阴影常被误划为目标并干扰目标的分割和跟踪,所以阴影检测在许多图像监控系统中都非常重要.本文研究传统阴影检测算法.针对传统算法受特定条件约束不能自动适用于不同场景的不足,提出一种在场景特征未知情况下的阴影检测算法.算法综合考虑颜色信息、空间信息和纹理信息,利用阴影的颜色、空间和纹理属性在待分析区域中确定其造成的颜色形变,通过使用颜色形变补偿和纹理校正检测到运动阴影.基于不同图像的实验结果表明该方法的有效性. 相似文献
13.
14.
15.
由于现有聚类算法不能很好的解决移动环境下移动对象动态变化,本文提出了一种基于层次的移动对象动态聚类算法.该算法通过类中某些特殊点来表示该类,并且记录类合并过程中一些重要特征,使得移动对象动态变化时,简化聚类的过程,从而满足移动环境下对动态聚类算法时间的要求. 相似文献
16.
17.
18.
19.
在对象存储系统中,如何有效地在对象存储设备上分布对象是其面临的重大挑战.需要一个能够常数时间内定位对象,同时能公平地分布对象以及自适应存储规模变化的对象布局算法.目前大部分布局算法只能适应单层模式,少数的多层模式对设备配置有严格的要求,而且无法在常数时间内定位对象,自适应性较差.提出了一种新的分层对象布局算法,首先使用最大最小聚类算法将设备集合进行分类,支持灵活的设备配置.然后使用提出的EFAH Hashing算法在集群间和集群内分布对象.理论和实验证明,新的分层对象布局算法可以在常数时间内定位对象,从而减轻元数据服务器的计算量.同时可以在设备之间较公平地分布对象,达到I/O负载均衡的目的.而且在设备集合变化时,迁移较少的对象数以满足对象再次分布的公平性. 相似文献
20.
为了从监控视频中检测出较高质量的运动物体,文章提出了一种基于帧间差分和背景差分相结合的运动目标的检测方法,并且采用像素级和帧级背景更新相配合的一种背景更新策略。算法求取各像素点处的最大概率灰度,从而提取出连续视频的背景图像;相邻帧则利用帧间差分法以及背景差分法得到两幅运动区域图像;将两幅运动区域图像相与,提取出较为准确的运动目标。实验证明,该算法对光线的变化鲁棒性较高,运算速度较快,且能够及时的响应监控视频的实时变化,提高运动目标的检测质量。 相似文献