首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
2.
A study was performed to determine the drying characteristics and quality of barley grain dried in a laboratory scale spouted-bed dryer at 30, 35, 40, and 45°C and an inlet air velocity of 23 m/s?1, and in an IR-convection dryer under an infrared radiation intensity of 0.048, 0.061, 0.073, and 0.107 W cm?2 at an air velocity of 0.5 m/s?1. The results show that the first, relatively short, phase of a sharp decrease in the drying rate was followed by the phase of a slow decrease. The time of barley drying depended on temperature of inlet air in a spouted-bed dryer and on radiation intensities in an IR-convection dryer. Barley drying at 45°C in a spouted-bed dryer was accompanied by the lowest total energy consumption. The average specific energy consumption was lower and the average efficiency of drying was higher for drying in a spouted-bed dryer. The effective diffusivities were in the range 2.20–4.52 × 10?11 m2 s?1 and 3.04–4.79 × 10?11 m2/s?1 for barley dried in a spouted-bed and in an IR-convection dryer, respectively. There were no significant differences in kernel germination energy and capacity between the two drying methods tested.  相似文献   

3.
The purpose of this research is to investigate the drying kinetics and determine the suitable drying method of prina, which is obtained after pressing of olives in olive oil factories, and which cannot be used efficiently in certain sectors. Drying experiments were performed at drying temperatures of 60°C, 70°C, and 80°C at a fixed air velocity of 2 m/s using a hot air dryer and with microwave powers of 90 W, 360 W, and 600 W using a microwave dryer. The prina layer thicknesses were selected as 7, 9, and 11 mm for both drying methods. The minimum energy consumption values were measured as 42.0 Wh for 600 W power level and 7 mm layer thickness, and 10260 Wh for 7 mm layer thickness and 80°C temperatures. It was found that energy consumption during hot air drying was more than that of microwave drying. As a result, the suitable dryer and thickness of layer were selected as microwave dryer and 7 mm, respectively. The results of statistical analyses showed that the most suitable model to define the drying behavior of prina samples were found to be the Page model for the microwave dryer and Wang &; Singh model for the hot air dryer. Also, penetration depth, the loss tangent value (tanδ), dielectric constant of material (??), and dielectric loss factor (???) of dried prina were calculated as 34.51 cm, 0.1059, 75.65, and 8.01, at 2450 MHz, respectively.  相似文献   

4.
Experimental results of surface temperature and moisture content of twigs of mate were obtained in a conveyor-belt dryer operated batchwise. The first response was determined with an infrared sensor, while the second was by conventional gravimetry. A set of 0.04-m-long cylindrical twigs classified manually into three different subgroups on the basis of their diameters (3.5 × 10?3, 6.5 × 10?3, and 10 × 10?3 m) were used in the experiments. Drying always took place in a chamber fed with a thin single layer of material 0.5 m in length and 0.05 m wide. The fresh twigs without leaves at ambient temperature (≈27.2 ± 2.6°C) and with an initial moisture content close to 0.8 ± 0.1 were dried at three different average air temperatures (65.5, 80.2, and 83.8°C) for 7200 s. A full set of nine (31 × 31) drying experiments were performed by varying the examined factors (particle diameter and drying temperature) at three levels. The low estimated Biot numbers (<0.55) indicate that convection plays a much more important role than conduction in heat transfer. Because of this and since heating was much faster than drying, the Newton’s law of cooling alone was successfully applied to describe the increase of particle temperature with time. From a similar analysis involving a convective mass transfer coefficient calculated with the Chilton-Colburn analogy emerged high-mass-transfer Biot numbers (≈5.37 × 103 ? 3.65 × 105) that reveal drying of twigs is governed by diffusion. In fact, the equation that represents the Fick’s second law of diffusion in a long cylinder (one-dimensional transfer), solved analytically and coupled to the model of heat transfer, was able to describe the kinetics of drying of mate twigs.  相似文献   

5.
Thin-layer drying experiments under controlled conditions were conducted for green sweet pepper in heat pump dryer at 30, 35, and 40°C and hot air dryer at 45°C with relative humidities ranging from 19 to 55%. The moisture content of sweet pepper slices reduced exponentially with drying time. As the temperature increased, the drying curve exhibited a steeper slope, thus exhibiting an increase in drying rate. Drying of green sweet pepper took place mainly under the falling-rate period. The Page equation was found to be better than the Lewis equation to describe the thin-layer drying of green sweet pepper with higher coefficient of determination and lower root mean square error. Drying in heat pump dryer at 40°C took less time with higher drying rate and specific moisture extraction rate as compared to hot air drying at 45°C due to lower relative humidity of the drying air in a heat pump dryer though the drying air temperature was less. The retention of total chlorophyll content and ascorbic acid content was observed to be more in heat pump–dried samples with higher rehydration ratios and sensory scores. The quality parameters showed a declining trend with increase in drying air temperature from 30 to 45°C. Keeping in view the energy consumption and quality attributes of dehydrated products, it is proposed to dry green sweet pepper at 35°C in heat pump dryer.  相似文献   

6.
Sugarcane bagasse is becoming more and more commonly used in generating electrical energy, steam, and bioethanol. Drying is important in sugarcane and other types of biomass because it can be used to improve the calorific value and overall energetic use. In this work, sugarcane bagasse was treated by drying in a cyclonic dryer. The influence of the geometry of the device (the conical part of the cyclone) and process parameters (bagasse mass flow rate and temperature) were tested. The modification on the conical part was related to two different angles and with two different inferior outlets (B). Experimental design was carried out for each geometry. The independent variables were the drying agent temperature (35 to 275°C) and the bagasse mass flow rate (0.1 × 10?2 to 2.9 × 10?2 kg s?1). The air flow rate was kept constant at 7.5 × 10?2 kg s?1. The dependent variables were moisture reduction (MR) and average particle residence time (tres) in the cyclonic dryer. For both cyclonic geometries, it was observed that MR was directly proportional to the temperature and inversely proportional to the bagasse mass flow rate. tres was also inversely proportional to the bagasse mass flow rate. Decreasing B tended to increase tres and MR.  相似文献   

7.
The effect of drying temperature on grape wastes, the solid wastes of the wine and raki production processes, was investigated in a cabinet dryer. Drying experiments were performed three air temperatures of 70°, 90,° and 110°C, at constant air velocity of 1.2 m/s, and initial thickness of 1.8 cm for grape marc and 2.0 cm for grape pulp. Experimental data were fitted to Henderson and Pabis, Page, and logarithmic models, respectively. The performance of these models is evaluated by comparing coefficient of determination and reduced chi-square between the observed and predicted moisture ratios. The statistical analysis concluded that the best model was the logarithmic model. The effective moisture diffusivity varied from 8.55 × 10?10 to 3.32 × 10?9 m2/s over the temperature range. Temperature dependence of the diffusivity was well documented by an Arrhenius-type relationship. The activation energies for grape marc and grape pulp were calculated as 25.41 and 13.74 kJ/mol, respectively.  相似文献   

8.
This article is concerned with the energy and exergy analyses of the continuous-convection drying of potato slices. The first and second laws of thermodynamics were used to calculate the energy and exergy. A semi-industrial continuous-band dryer has been designed and used for drying experiments. The equipment has a drying chamber of 2 m length and the inlet air used for drying is heated by gas power. The experiments were conducted on potato slices with thickness of 5 mm at three different air temperatures of 50, 60 and 70°C, drying air mass flow rates of 0.61, 1.22, and 1.83 kg/s and feeding rates of 2.31 × 10?4, 2.78 × 10?4, and 3.48 × 10?4 kg/s. The energy utilization and energy utilization ratio were found to vary between 3.75 and 24.04 kJ/s and 0.1513 and 0.3700, respectively. These values show that only a small proportion of the supplied energy by the heater was used for drying. The exergy loss and exergy efficiency were found to be in the range of 0.5987 to 13.71 kJ/s and 0.5713 to 0.9405, respectively, indicating that the drying process was thermodynamically inefficient and much energy was vented in the exhaust air. In addition, the results showed that the feeding rate and the temperature and flow rate of the drying air had an important effect on energy and exergy use. This knowledge will provide insights into the optimization of a continuous dryer and the operating parameters that causes reduction of energy consumption and losses in continuous drying.  相似文献   

9.
A prototype of a hybrid solar dryer was developed for drying of tomato. It consists of a flat-plate concentrating collector, heat storage with auxiliary heating unit, and drying unit. It has a loading capacity of 20 kg of fresh half-cut tomato. The dryer was tested in different weather and operating conditions. The performance of the dryer was compared with an open sun-drying method. Drying performance was evaluated in terms of drying rate, color, ascorbic acid, lycopene, and total flavonoids. Tomato halves were pretreated with UV radiation, acetic acid, citric acid, ascorbic acid, sodium metabisulphite, and sodium chloride. Sodium metabisulphite (8 g L?1) was found to be effective to prevent the microbial growth at lower temperature (45°C).  相似文献   

10.
ABSTRACT

The drying kinetics and quality attributes of wolfberry were investigated under pulsed vacuum drying based on two different heating ways of far-infrared radiation (PVD-FIR) and electronic panel contact (PVD-EPC) heating. They were operated at different drying values of heating panel temperatures (60, 65, and 70°C) with 15 and 2?min as the constant vacuum pressure and atmospheric pressure duration, respectively. Drying time for wolfberry dried by PVD-FIR was lower by 17–19% compared with that by PVD-EPC at the same drying temperature. The effective moisture diffusivity (Deff) determined by Weibull distribution model ranged from 3.72?×?10?10 to 6.59?×?10?10?m2/s and 3.34?×?10?10 to 6.88?×?10?10?m2/s for PVD-FIR and PVD-EPC, respectively. The drying activation energy was 54.30 and 68.59?kJ/mol for the samples dried by PVD-FIR and PVD-EPC, respectively. The color parameters L*, a*, and b* of wolfberry dried by PVD-FIR were higher than those dried by PVD-EPC. The product dried by PVD-FIR contained more vivid luster compared to that dried by PVD-EPC. The contents of aldehydes, esters, phenols, and the heterocyclic compound in PVD-FIR sample were higher than those in PVD-EPC samples. Additionally, the alcohols, ketones, and acid contents in PVD-FIR sample were lower than those in PVD-EPC sample. In summary, PVD-FIR is more suitable for wolfberry drying as it enhances drying rate and product’s quality compared with PVD-EPC.  相似文献   

11.
Sodium acetate crystals obtained from the reaction of acetic acid with sodium hydroxide are usually dried in rotary or fluidized beds. In this study, a batch pulsed fluid bed dryer with a 0.18 m2 cross‐sectional area was used in an attempt to reduce energy consumption and increase productivity. Drying curves of sodium acetate were determined for different conditions: inlet air temperature of 65 and 80 °C and pulsation frequency of 0 rpm (conventional fluidized bed), 500 and 900 rpm (pulsed fluid bed). A 22 factorial design was used to analyze the results. The intermittent flow helped to break agglomerates and provided better contact between particles and the gas. Drying rates were higher under pulsed fluidization when compared to conventional fluidization. Conventional fluidized bed drying consumed 2.5 times more energy at 80 °C. The influence of temperature on the drying rate was also evident.  相似文献   

12.
In the current study, evolution of thermophysical properties of red chilli dried in a mixed mode solar dryer that integrates sodium sulfate decahydrate (Na2SO4?·?10H2O) and sodium chloride (NaCl) as thermal storage were presented. Solar drying with Na2SO4?·?10H2O reduced the drying time by 26.7 and 39%, compared to the drying time with or without NaCl. Dimensional shrinkage was gradual with a nonlinear exponential shape for the whole drying conditions. The evolution of the bulk and particle densities decreased while the porosity of the seed increased with time. The coefficient of heat and mass transfer varied from 0.0036???0.035?W/m2?K to 6.09?×?10?9???6.2?×?10?8?m/s, respectively. The thermal conductivity, specific heat capacity, and thermal diffusivity ranged from 0.0568 to 0.1093?W/m?K, 1,072 to 2218.7?J/kg?K, and 4.7?×?10?5 to 5.13?×?10?5?m2/s, respectively.  相似文献   

13.
The effects of pretreatments such as citric acid and hot water blanching and air temperature on drying and rehydration characteristics of red kidney bean seeds were investigated. Drying experiments were carried out at four different drying air temperatures of 50°C, 60°C, 70°C, and 80°C. It was observed that drying and rehydration characteristics of bean seeds were greatly influenced by air temperatures and pretreatments. Four commonly used mathematical models were evaluated to predict the drying kinetics of bean seeds. The Weibull model described the drying behaviour of bean seeds at all temperatures better than the other models. The effective moisture diffusivities (Deff) of bean seeds were determined using Fick's law of diffusion. The values of Deff were between 1.25 × 10?9 and 3.58 × 10?9 m2/s. Activation energy was estimated by an Arrhenius-type equation and was determined as 24.62, 21.06, and 20.36 kJ/mol for citric acid, blanch, and control samples, respectively.  相似文献   

14.
Single-layer solar drying experiments were conducted for Mexican tea leaves (Chenopodium ambrosioides) grown in Marrakech. An indirect forced convection solar dryer was used in drying the Mexican tea leaves at different conditions such as ambient air temperature (21° to 35°C), drying air temperature (45° to 60°C) with relative humidity (29 to 53%), airflow rate (0.0277 to 0.0556 m 3/s), and solar radiation (150–920 W/m2). The experimental drying curves showed only a falling rate period. In order to select the suitable form of drying curves, 14 mathematical models were applied to the experimental data and compared according to their statistical parameters. The main factor in controlling the drying rate was found to be the temperature. The drying rate equation was determined empirically from the characteristic drying curve. The diffusion coefficient of the Chenopodium ambrosioides leaves was estimated and varied between 1.0209 × 10?9 and 1.0440 × 10?8 m 2·s?1.The activation energy was found to be 89.1486 kJ·mol?1.  相似文献   

15.
Entrained flow drying is an important fast drying tool in tobacco industry. This study used a drop tube reactor (DTR) as an entrained flow dryer to investigate drying process of flue-cured cut tobacco. Lab-scale cold and hot DTRs were set up to obtain drying kinetics for three types of cut tobacco using different drying gases and temperatures. The effective diffusion coefficients of cut tobacco in DTRs were compared with those in a general cylinder dryer. Moreover, the effects of different drying gases and temperatures on petroleum ether extract content were investigated. The results showed that the effective diffusion coefficients of cut tobacco in the DTRs were between 2.296?×?10?8 and 8–6.244?×?10?8?m2/s, which are two orders of magnitude higher than those in the cylinder dryer. Compared to hot air as a drying medium, superheated steam improved the effective diffusion coefficient of cut tobacco. The petroleum ether tobacco extract had a higher retention ratio when the superheated steam was used in the DTRs. An increase in the drying temperature resulted in a lower retention of the petroleum ether tobacco extract.  相似文献   

16.
Atmospheric freeze drying is a highly attractive process for the dehydration of thermosensitive products, like food, due to the fact that water is removed at low temperature by sublimation. Unfortunately, drying times can be very long because of the internal resistance of the product to vapor diffusion: power ultrasound can be an effective means of accelerating the process, thus reducing the operating cost. The aim of this study was to assess the effect of air temperature and velocity, ultrasound power and sample size on the drying kinetics of eggplant (Solanum melongena L.) samples and, afterward, to analyze in silico an industrial process. Experiments were performed under various conditions regarding air temperature (?5, ?7.5, ?10°C), velocity (2 and 5?m?s?1), power ultrasound (0, 10.3, 20.5?kW?m?3, 21.9?kHz), and sample size. Drying rate was measured experimentally. The air velocity showed no relevant effects on the drying kinetics, and the effect of air temperature was slight when compared to the marked reduction in the drying time obtained when ultrasound was applied. The uniformly retreating interface model was modified to account for the cubic shape of the samples and used to establish the kinetic parameters, in particular to evaluate water diffusivity in the dried product, searching for the best fit between measured and calculated moisture content. The model was finally used to optimize the process in silico, considering an industrial unit as test case. In this case, it appeared that power ultrasound can increase the productivity of a tunnel dryer up to four or five times, and it allows the operational and fixed costs of the plant to be reduced significantly.  相似文献   

17.
Abstract

This work evaluated the effect of ultrasonic pretreatment on the production of dehydrated apples (Malus domestica L. var Granny Smith) in a fluidized bed dryer. Cube-shaped apple samples were subjected to ultrasound in an ultrasonic bath and dried in a fluidized bed drier. The experimental design evaluated the effect of ultrasound pretreatment time (0 to 30?min) on the soluble solids loss during pretreatment and on the drying time. The ultrasonic pretreatment was carried out in a bath ultrasound operating at 25?kHz and outputting 55?W/m3 of power density. Distilled water was applied in the pretreatment to produce low-calorie apple cubes. Fluidized bed drying was carried out at 30, 40, and 50?°C. Fick’s law was used to model the drying process and to determine the apparent water diffusivity. The soluble solid loss ranged between 8.7 and 21.2% during the pretreatment, and the apparent water diffusivity during air drying ranged from 1.09?×?10?6 to 2.81?×?10?6 m2/min. Ultrasound pretreatment increased the apparent water diffusivity up to 58%. Apple cubes subjected to 20?min of ultrasound pretreatment and dried at 50?°C presented the highest apparent water diffusivity and dried to achieve a water activity of 0.4 in 100?min.  相似文献   

18.
Drying of two kinds of wastewater sludge was studied. The first part was an experimental work done in a discontinuous cross-flow convective dryer using 1 kg of wet material extruded in 12-mm-diameter cylinders. The results show the influence of drying air temperature for both sludges. The second part consisted of developing a drying model in order to identify the internal diffusion coefficient and the convective mass transfer coefficient from the experimental data. A comparison between fitted drying curves, well represented by Newton's model, and the analytical solutions of the equation of diffusion, applied to a finite cylinder, was made. Variations in the physical parameters, such as the mass, density, and volume of the dried product, were calculated. This allowed us to confirm that shrinkage, which is an important parameter during wastewater sludge drying, must be taken into account. The results showed that both the internal diffusion coefficient and convective mass transfer coefficient were affected by the air temperature and the origin of the sludge. The values of the diffusion coefficient changed from 42.35 × 10?9 m2 · s?1 at 160°C to 32.49 × 10?9 m2 · s?1 at 122°C for sludge A and from 33.40 × 10?9 m2 · s?1 at 140°C to 28.45 × 10?9 m2 · s?1 at 120°C for sludge B. The convective mass transfer coefficient changed from 4.52 × 10?7 m · s?1 at 158°C to 3.33 × 10?7 m · s?1 at 122°C for sludge A and from 3.44 × 10?7 m · s?1 at 140°C to 2.84 × 10?7 m2 · s?1 at 120°C for sludge B. The temperature dependency of the two coefficients was expressed using an Arrhenius-type equation and related parameters were deduced. Finally, the study showed that neglecting shrinkage phenomena resulted in an overestimation that can attain and exceed 30% for the two coefficients.  相似文献   

19.
《Drying Technology》2013,31(5):895-917
Abstract

The concept of the product moisture locus was tested in this work using a pilot-scale modified Niro spray dryer (diameter 0.8 m, height 2 m), where the residence time of the particles inside this spray dryer is lower compared with larger industrial spray dryers. The moisture contents of skim milk powder produced from spray drying skim milk (solids content 8.8% w/v) at different operating conditions, namely different swirl vane angles (0°, 25°, 30°), inlet air temperatures (170°C, 200°C, 230°C) and process fluid flowrates (1.4 kg h?1, 1.6 kg h?1, 1.8 kg h?1), were compared with the predicted equilibrium moisture contents. In addition, the residence time of the particles was also increased in the spray dryer by decreasing the inlet air mass flowrate from 0.016 to 0.013 kg s?1. The outlet moisture contents of the skim milk powder for all the 23 runs carried out in this work were within 0.4% of the equilibrium values. Thus, the skim milk powder particles were in close equilibrium with the gas inside the drying chamber. These equilibrium limitations are confirmed by other literature data (Boonyai, P. Comparative Evaluation of Soymilk Drying in a Spray Dryer and Spouted Bed of Inert Particles. M.Sc. Thesis. Asian Institute of Technology: Bangkok, Thailand, 2000; 90 pp; Harvie, D.J.E.; Langrish, T.A.G.; Fletcher, D.F. A computational fluid dynamics study of a tall-form spray dryer. Trans IChemE 2002, in press). The use of this finding to predict spray dryer performance is demonstrated by mass and energy balance calculations.  相似文献   

20.
《Drying Technology》2013,31(3):569-586
ABSTRACT

In this work we suggest the dynamic modeling of a spray dryer considered as a series of well-stirred dryers. That is, a series of dryers in which the output variables are equal to the state variables. The state equations were obtained from the heat and water mass balances in product and air. Additionally, heat and water mass balances in interface jointly with water equilibrium relation between product and air were considered. A pilot spray dryer was modeled assuming one, two, five and 20 well stirred steps. Low-fat milk with 10–20% of solids was dried at different inlet air temperatures (120–160°C), air flow rate of 0.19 kg dry air s?1 and different feed rates (1.4 ? 4.2 × 10?4 kg dry solids s?1). Stationary result showed that the model predicts the experimental air outlet temperature, at different inlet conditions with a maximum deviation of 6°C. The dynamic simulation reproduce the experimental one with moderate accuracy. Experimental dynamic showed that the pilot plant spray dryer has a well-stirred process behavior. The model represents a method for estimate outlet product moisture as function of the outlet air temperature. This has application for automatic control because there is not an easy way to measure on-line measure the outlet product moisture content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号