首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gelatin is a natural protein, which works well as the gate dielectric for pentacene/N,N-dioctyl-3,4,9,10-perylene tetracarboxylic diimide (PTCDI-C8) ambipolar organic field-effect transistors (OFETs) in air ambient and in vacuum. An aqueous solution process was used to form the gelatin gate dielectric film on poly(ethylene terephthalate) (PET) by spin-coating and subsequent casting. Pentacene morphology and interface roughness are two major factors affecting the electron and hole field-effect mobility (μFE) values of pentacene/PTCDI-C8 ambipolar OFETs in vacuum and in air ambient. In contrast, water absorption in gelatin has higher contribution to the electron and hole μFE values in air ambient. The ambipolar performance of pentacene/PTCDI-C8 ambipolar OFETs depends on their layer sequence. For example, when PTCDI-C8 is deposited onto pentacene, i.e. in the structure of PTCDI-C8/pentacene, unbalanced ambipolar characteristics appear. In contrast, better ambipolar performance occurs in the structure of pentacene/PTCDI-C8. The optimum ambipolar characteristics with electron μFE of 0.85 cm2 V−1 s−1 and hole μFE of 0.95 cm2 V−1 s−1 occurs at the condition of pentacene (40 nm)/PTCDI-C8 (40 nm). Surprisingly, water absorption plays a crucial role in ambipolar performance. The device performance changes tremendously in pentacene/PTCDI-C8 ambipolar OFETs due to the removal of water out of gelatin in vacuum. The optimum ambipolar characteristics with electron μFE of 0.008 cm2 V−1 s−1 and hole μFE of 0.007 cm2 V−1 s−1 occurs at the condition of pentacene (65 nm)/PTCDI-C8 (40 nm). The roles of layer sequence, relative layer thickness, and water absorption are proposed to explain the ambipolar performance.  相似文献   

2.
3.
In this study, we report on the fabrication of poly-crystalline silicon (poly-Si) using the metal-induced crystallization (MIC) method and its application to thin film transistors (TFTs). The top gate of the p-type TFTs, whose active layer used MIC poly-Si annealed for 1 h at 650 °C, showed a field effect mobility (μFE) of 7.5 cm2/V s. By increasing the crystallization time to 5 h, the quality of the MIC poly-Si was improved. The μFE increased from 7.5 to 15 cm2/V s. In order to enhance the channel mobility, the Si dangling bonds, which were produced during the transformation from the amorphous phase to the poly-crystalline phase of silicon (Si), were reduced by using plasma hydrogenation. Measurements show that the μFE reached 45 cm2/V s after passivation by an inductively coupled plasma chemical vapor deposition (ICPCVD) system.  相似文献   

4.
《Organic Electronics》2014,15(4):954-960
The major ampullate (MA) silk collected from giant wood spiders Nephila pilipes consists of 12% glutamic acid (Glu) and 4% tyrosine (Tyr) acidic amino residues. The MA silk may act as a natural polyelectrolyte for organic field-effect transistors (OFETs). Pentacene and F16CuPc OFETs were fabricated with the MA silk thin film as the gate dielectric. The MA silk thin film with surface roughness of 4 nm and surface energy of 36.1 mJ/m2 was formed on glass using a hexafluoroisopropanol (HFIP) organic process. The MA silk gate dielectric in pentacene OFETs may improve the field-effect mobility (μFE,sat) value in the saturation regime from 0.11 in vacuum to 4.3 cm2 V−1 s−1 in air ambient at ca. 70% RH. The corresponding threshold voltage (VTH) value reduced from −6 V in vacuum to −0.5 V in air ambient. Similar to other polyelectrolytes, the changes of μFE,sat and VTH may be explained by the generation of electric double layers (EDLs) in the MA silk thin film in air ambient due to water absorption.  相似文献   

5.
Bovine serum albumin (BSA) is a natural protein with good hydration ability which contains acidic and basic amino acid residues of ca. 34% in total. In vacuum, pentacene organic field-effect transistors (OFETs) with BSA as the gate dielectric exhibits a field-effect mobility value (μFE,sat) of 0.3 cm2 V−1 s−1 in the saturation regime and a threshold voltage (VTH) of ca. −16 V. BSA is easy to be hydrated in air ambient. Electrical properties of BSA in vacuum and hydrated BSA in air ambient are characterized. Similar to polyelectrolyte, hydrated BSA may act the gate dielectric with the formation of electric double-layer capacitors (EDLCs) to improve the device performance. In a relative humidity of 47%, the μFE,sat value increases to 4.7 cm2 V−1 s−1 and the VTH reduces to −0.7 V. Generation of mobile ions in hydrated BSA and the formation of EDLCs are discussed.  相似文献   

6.
The synthesis of two new thieno(bis)imide (TBI, N) end functionalized oligothiophene semiconductors is reported. In particular, trimer (NT3N) and pentamer (NT5N) have been synthesized and characterized. Two different synthetic approaches for their preparation were tested and compared namely conventional Stille cross coupling and direct arylation reaction via C–H activation. Theoretical calculations, optical and electrochemical characterization allowed us to assess the role of the π-conjugation extent, i.e., of the oligomer size on the optoelectronic properties of these materials. In both TBI ended compounds, due to the strong localization of the LUMO orbital on the TBI unit, the LUMO energy is almost insensitive to the oligomer size, this being crucial for the fine-tailoring of the energy and the distribution of the frontier orbitals. Surprisingly, despite its short size and contrarily to comparable TBI-free analogues, NT3N shows electron charge transport with mobility up to μN = 10−4 cm2 V−1 s−1, while increasing the oligomer size to NT5N promotes ambipolar behavior and electroluminescence properties with mobility up to μN = 0.14 cm2 V−1 s−1 and to μP = 10−5 cm2 V−1 s−1.  相似文献   

7.
In this paper, we report the breakdown voltage (BV) of AlGaN/GaN based Schottky diodes with field plate edge termination. Simulation and fabrication of AlGaN/GaN Schottky diodes were carried out. The simulations were performed using the commercial 2-D device simulator DESSIS. From the simulations, it is found that for a given gate-Ohmic distance (Lgd) of 10 μm, 2DEG of 1 × 1013 cm−2 and field plate length (LFP) of 2.5 μm, highest BV can be obtained for a silicon nitride thickness of 8000 Å and this BV value is more than 5 times that for a Schottky diode without field plate. The breakdown voltages were also simulated for different field plate lengths. The BV values obtained on the fabricated Schottky diodes are compared with the simulation data and the experimental results follow the trend obtained from the simulation. Simulations were also carried out on a Schottky diode with field plate placed over a stepped insulator with Lgd = 10 μm, LFP = 5 μm and 2DEG = 1 × 1013 cm−2 and the obtained BV values are about 7 times that without field plate.  相似文献   

8.
Thin-film field-effect transistors (FETs) are widely used to evaluate charge transport properties of semiconducting polymers. Discovery of high performance materials require design and synthesis of new polymers. However, most polymers require multi-step synthesis and are difficult to be obtained in a large scale for comprehensive device evaluations. Here, we report a simple method to cast semiconducting polymer films from solutions with polymer concentration as low as 0.5 mg/mL, which is substantially less than typical values (∼10 mg/mL) used in conventional spin coating method. Here, we demonstrate that using this method, our cast films of a previously-reported polymer (PDPP-TT2T) exhibited field-effect mobility (μhole = 0.89 ± 0.13 cm2 V−1 s−1, μe = 0.025 ± 0.005 cm2 V−1 s−1), which is comparable to the reported values using the same device geometry. Furthermore, we extend this method to examine cast films of a pair of polymers (PDPP-3T-Ref, PDPP-3T-Si) to study the effect of siloxane substitution in the side chains on the molecular packing and their subsequent FET performance. We observed that shorter π-stacking distance (3.61 Å) for the siloxane-terminated polymer, when compared to that for the reference polymer (3.73 Å), resulted in improved FET performance (e.g., μhole = 0.63 ± 0.046 cm2 V−1 s−1 for PDPP-3T-Si vs μhole = 0.17 ± 0.062 cm2 V−1 s−1 for PDPP-3T-Ref). Taken together, this work presents an efficient alternative film-casting approach to produce polymer FETs that consumes much less material for their fabrication, lending viability for evaluation of various polymeric materials.  相似文献   

9.
We have used a sol-gel spin-coating process to fabricate a new metal-insulator-metal capacitor comprising 10-nm thick binary hafnium-zirconium-oxide (HfxZr1−xO2) film on a flexible polyimide (PI) substrate. The surface morphology of this HfxZr1−xO2 film was investigated using atomic force microscopy and scanning electron microscopy, which confirmed that continuous and crack-free film growth had occurred on the PI. After oxygen plasma pre-treatment and subsequent annealing at 250 °C, the film on the PI substrate exhibited a low leakage current density of 3.22 × 10−8 A/cm2 at −10 V and maximum capacitance densities of 10.36 fF/μm2 at 10 kHz and 9.42 fF/μm2 at 1 MHz. The as-deposited sol-gel film was oxidized when employing oxygen plasma at a relatively low temperature (∼250 °C), thereby enhancing the electrical performance.  相似文献   

10.
Normally-off GaN-MOSFETs with Al2O3 gate dielectric have been fabricated and characterized. The Al2O3 layer is deposited by ALD and annealed under various temperatures. The saturation drain current of 330 mA/mm and the maximum transconductance of 32 mS/mm in the saturation region are not significantly modified after annealing. The subthreshold slope and the low-field mobility value are improved from 642 to 347 mV/dec and from 50 to 55 cm2 V−1 s−1, respectively. The ID-VG curve shows hysteresis due to oxide trapped charge in the Al2O3 before annealing. The amount of hysteresis reduces with the increase of annealing temperature up to 750 °C. The Al2O3 layer starts to crystallize at a temperature of 850 °C and its insulating property deteriorates.  相似文献   

11.
The paper presents the results of capacitance-voltage, conductance-frequency and current-voltage characterization in the wide temperature range (140-300 K) as well as results of low temperature (5-20 K) thermally stimulated currents (TSC) measurements of metal-oxide-semiconductor (MOS) structures with a high-κ LaSiOx dielectric deposited on p- and n-type Si(1 0 0) substrate. Interface states (Dit) distribution determined by several techniques show consistent result and demonstrates the adequacy of techniques used. Typical maxima of interface states density were found as 4.6 × 1011 eV−1cm−2 at 0.2 eV and 7.9 × 1011 eV−1cm−2 at 0.77 eV from the silicon valence band. The result of admittance spectroscopy showed the presence of local states in bandgap with activation energy Ea = 0.38 eV from silicon conductance band, which is in accord with interface states profile acquired by conductance method. Low-temperature TSC spectra show the presence of shallow traps at the interface with activation energies ranging from 15 to 32 meV. The charge carrier transport through the dielectric film was found to occur via Poole-Frenkel mechanism at forward bias.  相似文献   

12.
The design, fabrication and analysis of a low voltage electroosmotic (eo) pump with integrated Ag/AgCl electrodes are shown. The fabrication was based on casting the hydrophilic polymer NOA63, capping the NOA63 trenches with a glass-slide and subsequently depositing Ag/AgCl electrodes by a flow of electroless solution and structuring the electrodes by microfluidic stopvalves. The herewith obtained eo pump embedded into the microfluidic system had a capillary cross-section of 65 μm × 55 μm and its flow rate was determined to be 0.12 nl s−1 V−1 Ueh within the range of applied voltages Ueh from −1.5 up to 1.5 V.  相似文献   

13.
A Ge-stabilized tetragonal ZrO2 (t-ZrO2) film with permittivity (κ) of 36.2 was formed by depositing a ZrO2/Ge/ZrO2 laminate and a subsequent annealing at 600 °C, which is a more reliable approach to control the incorporated amount of Ge in ZrO2. On Si substrates, with thin SiON as an interfacial layer, the SiON/t-ZrO2 gate stack with equivalent oxide thickness (EOT) of 1.75 nm shows tiny amount of hysteresis and negligible frequency dispersion in capacitance-voltage (C-V) characteristics. By passivating leaky channels derived from grain boundaries with NH3 plasma, good leakage current of 4.8 × 10−8 A/cm2 at Vg = Vfb − 1 V is achieved and desirable reliability confirmed by positive bias temperature instability (PBTI) test is also obtained.  相似文献   

14.
Buckminsterfullerene, C60-based planar heterojunction (PHJ) organic photovoltaics (OPVs) have been created using a short wavelength absorption (λmax = 490 nm) electron-donating bis(naphthylphenylaminophenyl)fumaronitrile (NPAFN). NPAFN exhibits a hole mobility greater than 0.07 cm2 V−1 s−1 as determined by its field-effect transistor. It can be attributed to such hole mobility that enables a thin layer (<10 nm) NPAFN in PHJ OPV, ITO/NPAFN/C60/bathocuproine/Al. Because of the low lying HOMO energy level (5.75 eV) of NPAFN and relatively high ionization potential ITO (∼5.58 eV), such OPVs exhibit a very high open circuit voltage of ∼1.0 V, relatively high fill factor of 0.60, and a relatively high shunt resistance of 1100 Ω cm−2, which all compensate for a relatively low short circuit current of 3.15 mA cm−2 due to the short absorption wavelength and inferred short exciton diffusion length of NPAFN. Altogether, NPAFN OPVs display a power conversion efficiency (ηPC) of 2.22%, which is better than other long wavelength absorption materials in similar PHJ OPVs, such as pentacene (λmax 670 nm, HOMO 5.12 eV, ηPC 1.50%) and copper phthalocyanine (λmax 624, 695 nm, HOMO 5.17 eV, ηPC 1.43%).  相似文献   

15.
We reported an ionization potential (IP) dependent air exposure effect on the MoO3/organic interface energy level alignment by carrying out in situ ultraviolet photoelectron spectroscopy and synchrotron light based X-ray photoelectron spectroscopy investigations. The electronic structures at MoO3/organic interfaces comprising various π-conjugated small organic molecules with different IP on MoO3 substrate have been systematically investigated. For the molecules with low IP, MoO3/organic interface electronic structures remained almost unchanged after air exposure. In contrast, for the molecules with high IP, the highest occupied molecular orbital (HOMO) leading edge (or hole injection barrier) increases gradually with the increasing molecule IP after air exposure. For the MoO3/copper-hexadecafluorophthalocyanine (F16CuPc, IP: ∼6.58 eV) interface, air exposure can induce a significant downward shift of the HOMO level as large as ∼0.80 eV.  相似文献   

16.
Schottky barrier SOI-MOSFETs incorporating a La2O3/ZrO2 high-k dielectric stack deposited by atomic layer deposition are investigated. As the La precursor tris(N,N′-diisopropylformamidinato) lanthanum is used. As a mid-gap metal gate electrode TiN capped with W is applied. Processing parameters are optimized to issue a minimal overall thermal budget and an improved device performance. As a result, the overall thermal load was kept as low as 350, 400 or 500 °C. Excellent drive current properties, low interface trap densities of 1.9 × 1011 eV−1 cm−2, a low subthreshold slope of 70-80 mV/decade, and an ION/IOFF current ratio greater than 2 × 106 are obtained.  相似文献   

17.
Transport properties of the two dimensional electron gas (2DEG) formed at the interface of AlGaN/GaN heterostructure ranging from 20 K to 300 K has been investigated theoretically considering the various scattering mechanisms like the acoustic, the piezo, the surface roughness, the alloy, the polar optical phonon and the dislocation scattering. The dc mobility is found to remain constant up to 150 K and then it decrease sharply with further increase in temperature. The ac mobility is also found to decrease with increase in the temperature. The real part of ac mobility, i.e. μr decreases with the increase in the frequency very fast initially and then gradually attains a steady value. The imaginary part of the ac mobility μim initially increases with the increase in the frequency and then decreases after reaching the maximum value. The value of the ac mobility reduces quite reasonably as the 2D carrier concentration increases at lower range of the frequency. At the carrier concentration of 5 × 1017 m−2, the ac mobility remains constant through a wide range of frequencies. With the increase in the dislocation densities, the values of the ac mobility are found to decrease at the lower range of frequencies. The thermo electric power is positive at the 2D carrier concentration of 5 × 1016 m−2, the value of which increases with the increase in the temperature and gradually attains a steady value. But the thermoelectric power at n2D of 1017 m−2 is found to be negative in the value. The value of ZT is found to increase with the temperature and attains the maximum value of 0.007 at 150 K and the value of ZT then decreases with increase in the temperature.  相似文献   

18.
We have investigated the power performance and scalability of AlGaAs/GaAs Double-Recessed Pseudomorphic High Electron Mobility Transistors (DR-PHEMTs) at 10 GHz on an unthinned GaAs substrate for CoPlanar Waveguide (CPW) circuit applications. It was found that the output power varied linearly with the logarithm of the device’s gate width ranging from 200 to 1000 μm. It increased at a rate of 0.01 dB/μm. That worked out to a doubling of output power (or 3 dB) for every 300 μm increase in the gate width. Gain decreased at a rate of about 0.005 dB/μm while PAE generally improved when the gate width was increased. As for DC measurement, the maximum transconductance of the device was about 375 mS/mm at VG = −0.5 V and VDS = 3 V. The gate-drain breakdown voltage (BVGD) measured was −20 V, defined at IG = −1 mA/mm. The microwave performance of the devices was measured on-wafer using a load-pull system at a bias of VG = −0.5 V and VDS = 8 V. For a device with a gate width of 1 mm, its saturated CW output power, gain and PAE value at 10 GHz was 27.5 dBm (0.55 W), 8 dB and 48%, respectively. At this same set of bias conditions, the value of ft and fmax was 40 and 80 GHz, respectively.  相似文献   

19.
C60-based organic thin film transistors (OTFTs) with high electron mobility and high operational stability are achieved with (1 1 1) oriented C60 films grown by using template effects of diindenoperylene (DIP) under layer on the SiO2 gate insulator. The electron mobility of the C60 transistor is significantly increased from 0.21 cm2 V−1 s−1 to 2.92 cm2 V−1 s−1 by inserting the template-DIP layer. Moreover much higher operational stability is also observed for the DIP-template C60 OTFTs. A grazing incidence X-ray diffraction and ultrahigh-sensitivity photoelectron spectroscopy measurements indicate that the improved electron mobility and stability arise from the decreased density of trap states in the C60 film due to increased (1 1 1) orientation of C60-grains and their crystallinity on the DIP template.  相似文献   

20.
We have fabricated flexible field-effect transistors (FETs) using poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)], PCDTBT, as an active channel, poly(methyl methacrylate) (PMMA) as gate dielectric and biaxially oriented polyethyleneterephthalate (BOPET) as supporting substrate. The output and transfer characteristics of the devices were measured as a function of channel length. It has been observed that various OFET parameters viz. on–off ratio (∼105), mobility (μ ∼ 10−4 cm2 V−1 s−1), threshold voltage (Vth ∼ −14 V), switch-on voltage (Vso ∼ −6 V), subthreshold slope (S ∼ 7 V/decade) and trap density (Nit ∼ 1014 cm−2 V−1) are almost independent of the channel length, which suggested a very high uniformity of the PCDTBT active layer. These devices were highly stable under atmospheric conditions (temperature: 20–35 °C and relative humidity: 70–85%), as no change in mobility was observed on a continuous exposure for 70 days. The studies on the effect of strain on mobility revealed that devices are stable up to a compressive or tensile strain of 1.2%. These results indicate that PCDTBT is a very promising active layer for the air stable and flexible FETs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号