共查询到20条相似文献,搜索用时 15 毫秒
1.
The GSD team-level service climate is one of the key determinants to achieve the outcome of global software development (GSD) projects from the software service outsourcing perspective. The main aim of this study is to evaluate the GSD team-level service climate and GSD project outcome relationship based on adaptive neuro-fuzzy inference system (ANFIS) with the genetic learning algorithm. For measuring the team-level service climate, the Hybrid Taguchi-Genetic Learning Algorithm (HTGLA) is adopted in the ANFIS, which is more appropriate to determine the optimal premise and consequent constructs by reducing the root-mean-square-error (RMSE) of service climate criteria. For measuring the GSD team-level service climate, synthesizing the literature reviews and consistent with the earlier studies on IT service climate which is classified into three main criterion: managerial practices (deliver quality of service), global service climate (measure overall perceptions), service leadership (goal setting, work planning, and coordination) which comprises 25 GSD team-level service climate attributes. The experimental results show that the optimal prediction error is obtained by the HTGLA-based ANFIS approach is 3.26%, which outperforms the earlier result that is the optimal prediction errors 4.41% and 5.75% determined, respectively, by ANFIS and statistical methods. 相似文献
2.
Bridge risks are often evaluated periodically so that the bridges with high risks can be maintained timely. This paper develops an adaptive neuro-fuzzy system (ANFIS) using 506 bridge maintenance projects for bridge risk assessment, which can help Highways Agency to determine the maintenance priority ranking of bridge structures more systematically, more efficiently and more economically in comparison with the existing bridge risk assessment methodologies which require a large number of subjective judgments from bridge experts to build the complicated nonlinear relationships between bridge risk score and risk ratings. The ANFIS proves to be very effective in modelling bridge risks and performs better than artificial neural networks (ANN) and multiple regression analysis (MRA). 相似文献
3.
An expert system for used cars price forecasting using adaptive neuro-fuzzy inference system (ANFIS) is presented in this paper. The proposed system consists of three parts: data acquisition system, price forecasting algorithm and performance analysis. The effective factors in the present system for price forecasting are simply assumed as the mark of the car, manufacturing year and engine style. Further, the equipment of the car is considered to raise the performance of price forecasting. In price forecasting, to verify the effect of the proposed ANFIS, a conventional artificial neural network (ANN) with back-propagation (BP) network is compared with proposed ANFIS for price forecast because of its adaptive learning capability. The ANFIS includes both fuzzy logic qualitative approximation and the adaptive neural network capability. The experimental result pointed out that the proposed expert system using ANFIS has more possibilities in used car price forecasting. 相似文献
4.
Xiong Luo Zengqi Sun Fuchun Sun 《International Journal of Control, Automation and Systems》2009,7(1):123-132
The study on nonlinear control system has received great interest from the international research field of automatic engineering.
There are currently some alternative and complementary methods used to predict the behavior of nonlinear systems and design
nonlinear control systems. Among them, characteristic modeling (CM) and fuzzy dynamic modeling are two effective methods.
However, there are also some deficiencies in dealing with complex nonlinear system. In order to overcome the deficiencies,
a novel intelligent modeling method is proposed by combining fuzzy dynamic modeling and characteristic modeling methods. Meanwhile,
the proposed method also introduces the low-level learning power of neural network into the fuzzy logic system to implement
parameters identification. This novel method is called neuro-fuzzy dynamic characteristic modeling (NFDCM). The neuro-fuzzy
dynamic characteristic model based overall fuzzy control law is also discussed. Meanwhile the local adaptive controller is
designed through the golden section adaptive control law and feedforward control law. In addition, the stability condition
for the proposed closed-loop control system is briefly analyzed. The proposed approach has been shown to be effective via
an example.
Recommended by Editor Young-Hoon Joo. This work was jointly supported by National Natural Science Foundation of China under
Grant 60604010, 90716021, and 90405017 and Foundation of National Laboratory of Space Intelligent Control of China under Grant
SIC07010202.
Xiong Luo received the Ph.D. degree from Central South University, Changsha, China, in 2004. From 2005 to 2006, he was a Postdoctoral
Fellow in the Department of Computer Science and Technology at Tsinghua University. He currently works as an Associate Professor
in the Department of Computer Science and Technology, University of Science and Technology Beijing. His research interests
include intelligent control for spacecraft, intelligent optimization algorithms, and intelligent robot system.
Zengqi Sun received the bachelor degree from Tsinghua University, Beijing, China, in 1966, and the Ph.D. degree from Chalmers University
of the Technology, Gothenburg, Sweden, in 1981. He currently works as a Professor in the Department of Computer Science and
Technology, Tsinghua University. His research interests include intelligent control of robotics, fuzzy neural networks, and
intelligent flight control.
Fuchun Sun received the Ph.D. degree from Tsinghua University, Beijing, China, in 1998. From 1998 to 2000, he was a Postdoctoral Fellow
in the Department of Automation at Tsinghua University, where he is currently a Professor in the Department of Computer Science
and Technology. His research interests include neural-fuzzy systems, variable structure control, networked control systems,
and robotics. 相似文献
5.
Evolutionary computation (EC) paradigm has undergone extensions in the recent years diverging from the natural process of genetic evolution to the simulation of natural life processes exhibited by the living organisms. Bee colonies exemplify a high level of intrinsic interdependence and co-ordination among its members, and algorithms inspired from the bee colonies have gained recent prominence in the field of swarm based metaheuristics. The artificial bee colony (ABC) algorithm was recently developed, by simulating the minimalistic foraging model of honeybees in search of food sources, for solving real-parameter, non-convex, and non-smooth optimization problems. The single parameter perturbation in classical ABC resulted in fairly commendable performance for simple problems without epistasis of variables (separable). However, it suffered from narrow search zone and slow convergence which eventually led to poor exploitation tendency. Even with the increase in dimensionality, a significant deterioration was observed in the ability of ABC to locate the optimum in a huge search volume. Some of the probable shortcomings in the basic ABC approach, as observed, are the single parameter perturbation instead of a multiple one, ignoring the fitness to reward ratio while selecting food sites, and most importantly the absence of environmental factors in the algorithm design. Research has shown that spatial environmental factors play a crucial role in insect locomotion and foragers seem to learn the direction to be undertaken based on the relative analysis of its proximal surroundings. Most importantly, the mapping of the forager locomotion from three dimensional search spaces to a multidimensional solution space calls forth the implementation of multiple modification schemes. Based on the fundamental observation pertaining to the dynamics of ABC, this article proposes an improved variant of ABC aimed at improving the optimizing ability of the algorithm over an extended set of problems. The hybridization of the proposed fitness learning mechanism with a weighted selection scheme and proximity based stimuli helps to achieve a fine blending of explorative and exploitative behaviour by enhancing both local and global searching ability of the algorithm. This enhances the ability of the swarm agents to detect optimal regions in the unexplored fitness basins. With respect to its immediate surroundings, a proximity based component is added to the normal positional modification of the onlookers and is enacted through an improved probability selection scheme that takes the T/E (total reward to distance) ratio metric into account. The biologically-motivated, hybridized variant of ABC achieves a statistically superior performance on majority of the tested benchmark instances, as compared to some of the most prominent state-of-the-art algorithms, as is demonstrated through a detailed experimental evaluation and verified statistically. 相似文献
6.
The paper presents a system that, according to the requirements referring to the product quality given in surface roughness, with minimum machining time and maximum metal removal rate, recommends optimal cutting parameters with the possibility of surface roughness control during the machining process. The suggested evolutionary neuro-fuzzy system for evaluation of surface roughness is composed of three units: surface roughness prediction by cutting parameters, multi-objective optimization of cutting parameters aimed at minimum machining time and maximum metal removal rate and control of obtained or required surface roughness by means of the features quantified from digital image of the observed machined surface. The paper outlines the idea and architecture of the system as well as the possibilities of implementation. The obtained results, illustrated by experimental research, justify the application and further development of the suggested evolutionary neuro-fuzzy system for evaluation of surface roughness within the given constraints. 相似文献
7.
In this study, we propose an Adaptive and Hybrid Artificial Bee Colony (aABC) algorithm to train ANFIS. Unlike the standard ABC algorithm, two new parameters are utilized in the solution search equation. These are arithmetic crossover rate and adaptivity coefficient. aABC algorithm gains the rapid convergence feature with the usage of arithmetic crossover and it is applied on two different problem groups and its performance is measured. Firstly, it is performed over 10 numerical ‘benchmark functions’. The results show that aABC algorithm is more efficient than standard ABC algorithm. Secondly, ANFIS is trained by using aABC algorithm to identify the nonlinear dynamic systems. Each application begins with the randomly selected initial population and then average RMSE is obtained. For four examples considered in ANFIS training, train error values are respectively computed as 0.0344, 0.0232, 0.0152 and 0.0205. Also, test error values for these examples are respectively found as 0.0255, 0.0202, 0.0146 and 0.0295. Although it varies according to the examples, performance increase between 4.51% and 33.33% occurs. Additionally, it is seen that aABC algorithm converges bettter than ABC algorithm in the all examples. The obtained results are compared with the neuro-fuzzy based approaches which are commonly used in the literature and it is seen that the proposed ABC variant can be efficiently used for ANFIS training. 相似文献
8.
With the development of the globalization of economy and manufacturing industry, distributed manufacturing mode has become a hot topic in current production research. In the context of distributed manufacturing, one job has different process routes in different workshops because of heterogeneous manufacturing resources and manufacturing environments in each factory. Considering the heterogeneous process planning problems and shop scheduling problems simultaneously can take advantage of the characteristics of distributed factories to finish the processing task well. Thus, a novel network-based mixed-integer linear programming (MILP) model is established for distributed integrated process planning and scheduling problem (DIPPS). The paper designs a new encoding method based on the process network and its OR-nodes, and then proposes a discrete artificial bee colony algorithm (DABC) to solve the DIPPS problem. The proposed DABC can guarantee the feasibility of individuals via specially-designed mapping and switching operations, so that the process precedence constraints contained by the network graph can be satisfied in the entire procedure of the DABC algorithm. Finally, the proposed MILP model is verified and the proposed DABC is tested through some open benchmarks. By comparing with other powerful reported algorithms and obtaining new better solutions, the experiment results prove the effectiveness of the proposed model and DABC algorithm successfully. 相似文献
9.
Virtualization, which acts as the underlying technology for cloud computing, enables large amounts of third-party applications to be packed into virtual machines (VMs). VM migration enables servers to be reconsolidated or reshuffled to reduce the operational costs of data centers. The network traffic costs for VM migration currently attract limited attention.However, traffic and bandwidth demands among VMs in a data center account for considerable total traffic. VM migration also causes additional data transfer overhead, which would also increase the network cost of the data center.This study considers a network-aware VM migration (NetVMM) problem in an overcommitted cloud and formulates it into a non-deterministic polynomial time-complete problem. This study aims to minimize network traffic costs by considering the inherent dependencies among VMs that comprise a multi-tier application and the underlying topology of physical machines and to ensure a good trade-off between network communication and VM migration costs.The mechanism that the swarm intelligence algorithm aims to find is an approximate optimal solution through repeated iterations to make it a good solution for the VM migration problem. In this study, genetic algorithm (GA) and artificial bee colony (ABC) are adopted and changed to suit the VM migration problem to minimize the network cost. Experimental results show that GA has low network costs when VM instances are small. However, when the problem size increases, ABC is advantageous to GA. The running time of ABC is also nearly half than that of GA. To the best of our knowledge, we are the first to use ABC to solve the NetVMM problem. 相似文献
10.
A physical habitat simulation is a useful tool for assessing the impact of river development or restoration on river ecosystem. Conventional methods of physical habitat simulation use the habitat suitability index models and their success depends largely on how well the model reflects monitoring data. One of preferred habitat suitability index models is habitat suitability curves, which are normally constructed based on monitoring data. However, these curves can easily be affected by the subjective opinion of the expert. This study introduces the ANFIS method for predicting the composite suitability index for use in physical habitat simulations. The ANFIS method is a hybrid type of artificial intelligence technique that combines the artificial neural network and fuzzy logic. The method is known to be a powerful approach especially for developing nonlinear relationships between input and output datasets.In this study, the ANFIS method was used to predict the composite suitability index for the physical habitat simulation of a 2.5 km long reach of the Dal River in Korea. Zacco platypus was chosen as the target fish of the study area. A 2D hydraulic simulation was performed, and the hydraulic model was validated by comparing the measured and predicted water surface elevations. The distribution of the composite suitability index predicted by the ANFIS model was compared with that using the habitat suitability curves. The comparisons reveal that the two distributions are similar for various flows. In addition, the distribution of the composite suitability index of the Dal River is computed by the ANFIS method using monitoring data for the other watersheds, namely the Hongcheon River, the Geum River, and the Chogang Stream. The monitoring data for the Chogang Stream, correlation pattern of which was the most similar to that of the Dal River, yielded the distribution of the composite suitability index, which was very close to that obtained using data for the Dal River. This is also supported by the mean absolute percentage error for the difference in the weighted usable areas. 相似文献
11.
As a new service-oriented smart manufacturing paradigm, cloud manufacturing (CMfg) aims at fully sharing and circulation of manufacturing capabilities towards socialization, in which composite CMfg service optimal selection (CCSOS) involves selecting appropriate services to be combined as a composite complex service to fulfill a customer need or a business requirement. Such composition is one of the most difficult combination optimization problems with NP-hard complexity. For such an NP-hard CCSOS problem, this study proposes a new approach, called multi-population parallel self-adaptive differential artificial bee colony (MPsaDABC) algorithm. The proposed algorithm adopts multiple parallel subpopulations, each of which evolves according to different mutation strategies borrowed from the differential evolution (DE) to generate perturbed food sources for foraging bees, and the control parameters of each mutation strategy are adapted independently. Moreover, the size of each subpopulation is dynamically adjusted based on the information derived from the search process. Different scales of the CCSOS problems are conducted to validate the effectiveness of the proposed algorithm, and the experimental results show that the proposed algorithm has superior performance over other hybrid and single population algorithms, especially for complex CCSOS problems. 相似文献
12.
With the advent of computing and communication technologies, it has become possible for a learner to expand his or her knowledge irrespective of the place and time. Web-based learning promotes active and independent learning. Large scale e-learning platforms revolutionized the concept of studying and it also paved the way for innovative and effective teaching-learning process. This digital learning improves the quality of teaching and also promotes educational equity. However, the challenges in e-learning platforms include dissimilarities in learner’s ability and needs, lack of student motivation towards learning activities and provision for adaptive learning environment. The quality of learning can be enhanced by analyzing the online learner’s behavioral characteristics and their application of intelligent instructional strategy. It is not possible to identify the difficulties faced during the process through evaluation after the completion of e-learning course. It is thus essential for an e-learning system to include component offering adaptive control of learning and maintain user’s interest level. In this research work, a framework is proposed to analyze the behavior of online learners and motivate the students towards the learning process accordingly so as to increase the rate of learner’s objective attainment. Catering to the demands of e-learner, an intelligent model is presented in this study for e-learning system that apply supervised machine learning algorithm. An adaptive e-learning system suits every category of learner, improves the learner’s performance and paves way for offering personalized learning experiences. 相似文献
13.
The purpose of this paper is to investigate the relationship between adverse events and infrastructure development investments in an active war theater by using soft computing techniques including fuzzy inference systems (FIS), artificial neural networks (ANNs), and adaptive neuro-fuzzy inference systems (ANFIS) where the accuracy of the predictions is directly beneficial from an economic and humanistic point of view. Fourteen developmental and economic improvement projects were selected as independent variables. A total of four outputs reflecting the adverse events in terms of the number of people killed, wounded or hijacked, and the total number of adverse events has been estimated.The results obtained from analysis and testing demonstrate that ANN, FIS, and ANFIS are useful modeling techniques for predicting the number of adverse events based on historical development or economic project data. When the model accuracy was calculated based on the mean absolute percentage error (MAPE) for each of the models, ANN had better predictive accuracy than FIS and ANFIS models, as demonstrated by experimental results. For the purpose of allocating resources and developing regions, the results can be summarized by examining the relationship between adverse events and infrastructure development in an active war theater, with emphasis on predicting the occurrence of events. We conclude that the importance of infrastructure development projects varied based on the specific regions and time period. 相似文献
14.
基于模糊神经网络的双凸极永磁电机非线性建模 总被引:2,自引:1,他引:1
双凸极永磁电机的电感、磁链等特性呈严重非线性,常规的线性或准线性模型难以准确反映双凸极永磁电机的实际特性,影响双凸极永磁电机的控制精度和工作性能.为此,本文提出采用自适应模糊神经网络建立双凸极永磁电机模型的新方法.首先在介绍了自适应模糊神经网络结构后,采用改进的递推最小二乘法修改网络参数,同时采用遗传算法对遗忘因子和学习率进行了优化,仿真计算和实测结果表明,该模型有很快的收敛性和很高的精确度,最后给出了利用模型实现双凸极永磁电机优化控制的方法. 相似文献
15.
Application of a neuro-fuzzy model to landslide-susceptibility mapping for shallow landslides in a tropical hilly area 总被引:22,自引:0,他引:22
Hyun-Joo OhBiswajeet Pradhan 《Computers & Geosciences》2011,37(9):1264-1276
This paper presents landslide-susceptibility mapping using an adaptive neuro-fuzzy inference system (ANFIS) using a geographic information system (GIS) environment. In the first stage, landslide locations from the study area were identified by interpreting aerial photographs and supported by an extensive field survey. In the second stage, landslide-related conditioning factors such as altitude, slope angle, plan curvature, distance to drainage, distance to road, soil texture and stream power index (SPI) were extracted from the topographic and soil maps. Then, landslide-susceptible areas were analyzed by the ANFIS approach and mapped using landslide-conditioning factors. In particular, various membership functions (MFs) were applied for the landslide-susceptibility mapping and their results were compared with the field-verified landslide locations. Additionally, the receiver operating characteristics (ROC) curve for all landslide susceptibility maps were drawn and the areas under curve values were calculated. The ROC curve technique is based on the plotting of model sensitivity — true positive fraction values calculated for different threshold values, versus model specificity — true negative fraction values, on a graph. Landslide test locations that were not used during the ANFIS modeling purpose were used to validate the landslide susceptibility maps. The validation results revealed that the susceptibility maps constructed by the ANFIS predictive models using triangular, trapezoidal, generalized bell and polynomial MFs produced reasonable results (84.39%), which can be used for preliminary land-use planning. Finally, the authors concluded that ANFIS is a very useful and an effective tool in regional landslide susceptibility assessment. 相似文献
16.
This paper proposes a novel diffusion subband adaptive filtering algorithm for distributed networks. To achieve a fast convergence rate and small steady-state errors, a variable step size and a new combination method is developed. For the adaptation step, the upper bound of the mean-square deviation (MSD) of the algorithm is derived and the step size is adaptive by minimizing it in order to attain the fastest convergence rate on every iteration. Furthermore, for a combination step realized by a convex combination of the neighbor-node estimates, the proposed algorithm uses the MSD, which contains information on the reliability of the estimates, to determine combination coefficients. Simulation results show that the proposed algorithm outperforms the existing algorithms in terms of the convergence rate and the steady-state errors. 相似文献
17.
18.
Finding the best flow patterns (i.e., choices of resources) for a family of products is a key part of supply chain management. It primarily focuses on reasonable selecting suppliers for every component, selecting plants for assembling every sub- or final assembly, and selecting the delivery options to bring products to customers. Different selecting operations form different cost and lead-time. Balancing a trade-off between cost and lead-time is a non-trivial problem in a three-echelon supply chain, which forms a complex network. We focus on finding the best flow patterns in which reasonable selections can be formed together to provide products or services. The objective is to minimize the bi-objective of cost and lead-time for any product. In this paper, we propose a complex network oriented artificial bee colony algorithm, which can be processed in parallel, to tackle the so-called combinatorial problem. Besides, we employ simulated annealing and gradient descent to find global Pareto optimal solutions in a supply chain network. Extensive experiments on the three-echelon supply chain network demonstrate the superiority of our proposals: (1) the proposed CN-ABC and CN-ABC-SAGD have the capability of discovering global POS in a complex three-echelon SCN; (2) the speed of searching global POS is accelerated to satisfy the requirement of its complexity of a SCN. 相似文献
19.
Lithium-ion (Li-ion) battery state of charge (SOC) estimation is important for electric vehicles (EVs). The model-based state estimation method using the Kalman filter (KF) variants is studied and improved in this paper. To establish an accurate discrete model for Li-ion battery, the extreme learning machine (ELM) algorithm is proposed to train the model using experimental data. The estimation of SOC is then compared using four algorithms: extended Kalman filter (EKF), unscented Kalman filter (UKF), adaptive extended Kalman filter (AEKF) and adaptive unscented Kalman filter (AUKF). The comparison of the experimental results shows that AEKF and AUKF have better convergence rate, and AUKF has the best accuracy. The comparison from the radial basis function neural network (RBF NN) model also verifies that the ELM model has lighter computation load and smaller estimation error in SOC estimation process. In general, the performance of Li-ion battery SOC estimation is improved by the AUKF algorithm applied on the ELM model. 相似文献
20.
An expert system for fault diagnosis in internal combustion engines using probability neural network
Jian-Da Wu Peng-Hsin Chiang Yo-Wei Chang Yao-jung Shiao 《Expert systems with applications》2008,34(4):2704-2713
An expert system for fault diagnosis in internal combustion engines using adaptive order tracking technique and artificial neural networks is presented in this paper. The proposed system can be divided into two parts. In the first stage, the engine sound emission signals are recorded and treated as the tracking of frequency-varying bandpass signals. Ordered amplitudes can be calculated with a high-resolution adaptive filter algorithm. The vital features of signals with various fault conditions are obtained and displayed clearly by order figures. Then the sound energy diagram is utilized to normalize the features and reduce computation quantity. In the second stage, the artificial neural network is used to train the signal features and engine fault conditions. In order to verify the effect of the proposed probability neural network (PNN) in fault diagnosis, two conventional neural networks that included the back-propagation (BP) network and radial-basic function (RBF) network are compared with the proposed PNN network. The experimental results indicated that the proposed PNN network achieved the best performance in the present fault diagnosis system. 相似文献