首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为解决微博用户兴趣提取不准确的问题,提出一种基于用户扩展兴趣的微博推荐方法。该方法将用户个体兴趣与关联兴趣结合为用户扩展兴趣进行微博推荐。其中,用户个体兴趣从用户标签、发布微博及交互微博中提取;用户关联兴趣通过用户与其关注用户间的关注关系强度、交互频繁程度和个体兴趣相似度获取。最后,计算用户扩展兴趣与待推荐微博的相似度,对相似度降序排列产生推荐列表。实验结果表明,新方法较传统方法更具有效性和准确性。  相似文献   

2.
王磊  任航  龚凯 《计算机应用》2019,39(5):1269-1274
针对现有社会化推荐算法在信任分析方面的不足,研究了从社交辅助信息中充分挖掘用户信任关系的方法,进而提出一种基于多维信任计算和联合矩阵分解的社会化推荐算法。首先,从用户社交行为、社交圈特征获得用户的动态和静态两种局部信任度,再利用信任网络的结构特征提取全局信任度;然后,构造一种对增强关注矩阵和社交信任矩阵进行联合矩阵分解的社会化推荐算法,并采用随机梯度下降法对其求解。基于新浪微博数据集的实验结果表明,所提出的算法在推荐精度和Top-K推荐能力方面明显优于socailMF、LOCABAL、contextMF和TBSVD这几种代表性的社会化推荐算法。  相似文献   

3.
刘绮虹  武小年  杨丽 《计算机应用》2011,31(7):1887-1890
在信任计算中,推荐信任具有极强的主观性,存在欺骗、诋毁等攻击行为,这些将掩盖被推荐用户行为的真实性,威胁系统安全。针对该问题,提出一种基于用户行为的加权信任计算方法,使用时间衰减标识反馈信息的时间属性,通过直接信任和推荐信任加权计算用户信任度;同时采用反馈可信度评估第三方推荐信任的真实性。仿真实验表明该方法具有较好的动态适应性,能够有效平衡恶意推荐,准确反映用户的行为变化,并计算用户行为的可信性,为系统安全决策提供可靠支持。  相似文献   

4.
针对主观信任的模糊性和不确定性以及现有的基于云模型的信任模型中粒度粗糙的问题,提出了一种基于多维信任云的信任模型。首先,依据实体间的直接交互经验和交互时间,利用加权逆向云生成算法计算被评估实体的直接信任云;然后,通过评估推荐实体的推荐可信度,计算被评估实体的推荐信任云;最后,综合直接信任云和推荐信任云产生综合信任云,并依此进行可信实体的选择。仿真结果表明,基于多维信任云的信任模型能够有效地识别系统中的各类服务实体,可提高实体间的交易成功率。  相似文献   

5.
基于信誉的peer-to-peer推荐信任模型   总被引:1,自引:2,他引:1  
随着对等网络p2p技术的不断发展,如何在p2p各个对等点之间建立起信任关系,已成为当今p2p技术研究的一个重要课题。在研究一些现有信任模型的基础上,分析其存在的问题,提出一种基于信誉的对等网信任模型,给出了信任度计算的算法.并设计了一种信任查询协议,最后,通过实验验证和分析了模型的可行性和安全性.  相似文献   

6.
提出一个基于聚类推荐的信任模型。通过聚类算法,对目标节点的评价值进行聚合,使用聚类产生的推荐拟合度以及推荐节点自身全局信誉值共同作为推荐权重,经过迭代合成节点的全局信誉值。仿真实验分析表明,与类似的迭代式信任模型相比,由于推荐权重的分配更合理,从而能更有效地缓解节点恶意行为带来的影响,特别是遏制不诚实推荐节点对信任模型的破坏。  相似文献   

7.
传统的协同过滤推荐技术主要基于用户-项目评价数据集进行挖掘推荐,没有有效地利用用户通信上下文信息,从而制约其进一步提高推荐的精确性。针对传统协同过滤推荐算法存在的推荐精度不高的弊端,在协同过滤算法中融入通信上下文信息,引入了通信信任、相似信任和传递信任三个信任度,并提出了一种基于信任的协同过滤推荐模型。通过公开数据集验证测试,证明提出的推荐算法较传统的协同过滤推荐技术在推荐准确性上有较大提高。  相似文献   

8.
为了解决协同过滤算法推荐精度低的问题,提出基于用户相似度和信任度的药品推荐算法。该方法通过离线使用DBSCAN算法对药品进行聚类来降低时间复杂度。引入共同评分药品阈值使用户相似度计算更准确,同时设置相似度阈值来限定相似性邻居的选取以克服KNN算法选取邻居的缺陷。根据用户的推荐可信度和评分可信度建立信任计算模型,计算基于相似邻居集的可信邻居集。通过两次邻居选择策略为目标用户产生药品推荐。仿真结果表明,该算法与其他算法相比在平均绝对误差、准确率和召回率上有更好的性能,提高了系统推荐精度。  相似文献   

9.
推荐系统是处理信息过载问题的重要手段,现有的基于信任网络推荐算法没有充分挖掘用户信任关系信息,影响推荐效果。提出了综合评估信任(CETrust)的模型,该模型综合考虑了用户间的直接信任和间接信任等因素。结合推荐项目的特征属性信息,集成到概率矩阵的因式分解模型中推荐。实验表明,新提出的推荐算法(H-CETrust)推荐精度高于现有推荐算法的推荐精度。  相似文献   

10.
电子商务环境下为用户提供高效的推荐是一个非常有意义的课题,然而稀疏性问题严重影响了推荐系统的推荐质量。为了有效解决这个问题,提出了一种基于信任传播的TSRCF协同过滤算法,在信任传播的基础上,提出了信任度,相似度,关系度的混合权重TSR,取代了传统的协同过滤算法的相似度,作为寻找邻居用户的标准。TSRCF算法在一定程度上缓解了稀疏性问题,帮助用户在信息过载的情境下得到高质量的推荐。在Epinions数据集和FilmTrust数据集上的仿真实验也验证了TSRCF算法比传统CF算法有更高的推荐精确度。  相似文献   

11.
12.
针对传统协同过滤算法普遍存在的稀疏性和冷启动问题,提出一种基于信任和矩阵分解的协同过滤推荐算法。提出一种基于用户评分值的隐式信任计算方法,该方法综合考虑用户的相似性和交互经验,运用信任传播方法使不存在直接信任的用户获得间接信任;通过动态因子将显式信任和隐式信任融入到SVD++算法当中。FilmTrust数据集下的实验表明,与其他矩阵分解推荐算法相比,该方法具有更好的预测效果,在冷启动用户的评分预测上也有很好的表现。  相似文献   

13.
个性化推荐系统中使用最广泛的算法是协同过滤算法,针对该算法存在的数据稀疏和扩展性差问题,提出了一种基于用户兴趣和社交信任的聚类推荐算法。该算法首先基于聚类技术根据用户评分信息将具有相同兴趣的用户聚为一类,并建立基于用户兴趣相近的邻居集合。为了提高兴趣相似度计算的准确性,采用了修正余弦计算公式来消除评分标准的差异问题。然后,引入信任机制,通过定义直接信任、间接信任、传递路径和计算方法来度量社交网络用户之间隐含的信任值,将社交网络转换为信任网络,依据信任程度来创建基于社交信任的邻居集合。通过加权的方式将基于两种邻居集合的预测值融合起来为用户产生项目的推荐。在Douban数据集上进行仿真实验,确定了最优的协调因子值和分类数值,并与基于用户的协同过滤算法和基于信任的推荐算法进行对比,实验结果表明,所提算法的平均绝对误差(MAE)减少了6.7%,准确率(precision)、覆盖(recall)和F1值分别增加了25%、40%和37%,有效提高了推荐系统的推荐质量。  相似文献   

14.
Li  Weimin  Ye  Zhengbo  Xin  Minjun  Jin  Qun 《Multimedia Tools and Applications》2017,76(9):11585-11602

The development of social media provides convenience to people’s lives. People’s social relationship and influence on each other is an important factor in a variety of social activities. It is obviously important for the recommendation, while social relationship and user influence are rarely taken into account in traditional recommendation algorithms. In this paper, we propose a new approach to personalized recommendation on social media in order to make use of such a kind of information, and introduce and define a set of new measures to evaluate trust and influence based on users’ social relationship and rating information. We develop a social recommendation algorithm based on modeling of users’ social trust and influence combined with collaborative filtering. The optimal linear relation between them will be reached by the proposed method, because the importance of users’ social trust and influence varies with the data. Our experimental results show that the proposed algorithm outperforms traditional recommendation in terms of recommendation accuracy and stability.

  相似文献   

15.
目前大多数推荐技术是针对用户单方面兴趣进行的。提出了一种用户多面(multi-faced)兴趣信任度的推荐算法,以适应博客、维客、新闻文章等涉及用户多种兴趣下的推荐。新算法以一种协调的方式将传统的协同过滤算法和基于信任度的推荐算法相结合。实验结果表明,该算法不仅能适应用户多种兴趣下的推荐,而且能有效解决冷启动问题,大大提高了推荐效果。  相似文献   

16.
兴趣点推荐是推荐系统的关键研究之一,传统的算法只利用用户签到信息进行推荐,且对于签到信息只单纯地考虑签到和没签到,而忽略了用户签到的频次和信任关系。为提高推荐精度,提出了一种融合用户相似性、地理位置和信任关系的混合推荐算法(UGT)。对于签到信息,采用签到频次来代替传统的二值签到,并对签到信息添加时间权重;对于基于用户的协同过滤,提出了一种邻居选择策略来提高预测精度;对于信任关系,首先分析用户的属性,然后给出社会地位的计算方法,重构信任度的计算方法。实验结果表明,该混合算法相比较传统的推荐算法而言,在准确率和召回率上有了显著的提升。  相似文献   

17.
沈学利  李子健  赫辰皓 《计算机应用》2005,40(10):2789-2794
针对推荐系统的数据稀疏性导致的推荐效果不佳的问题,提出一种基于评分填充与信任信息的混合推荐的算法RTWSO(Real-value user item restricted Boltzmann machine Trust WSO)。首先,使用改进的受限玻尔兹曼机模型对评分矩阵进行填充,以缓解评分矩阵的稀疏性问题;其次,从信任关系中提取信任与被信任关系,并通过基于矩阵分解的隐含信任关系相似度来解决信任信息稀疏的问题,而且对原有算法进行了包含信任信息的修正,以提高推荐准确度;最后,通过加权Slope One(WSO)算法对矩阵填充与信任相似度信息加以整合,并对评分数据进行预测。在Epinions与Ciao数据集中验证算法性能,可见所提出混合推荐算法较组成算法在推荐准确度上提升3%以上,较现有社会化推荐算法SocialIT(Social recommendation algorithm based on Implict similarity in Trust)在推荐准确度上提升1.2%以上。实验结果表明,所提出的基于评分填充与信任信息的混合推荐算法在一定程度上提高了推荐准确度。  相似文献   

18.
沈学利  李子健  赫辰皓 《计算机应用》2020,40(10):2789-2794
针对推荐系统的数据稀疏性导致的推荐效果不佳的问题,提出一种基于评分填充与信任信息的混合推荐的算法RTWSO(Real-value user item restricted Boltzmann machine Trust WSO)。首先,使用改进的受限玻尔兹曼机模型对评分矩阵进行填充,以缓解评分矩阵的稀疏性问题;其次,从信任关系中提取信任与被信任关系,并通过基于矩阵分解的隐含信任关系相似度来解决信任信息稀疏的问题,而且对原有算法进行了包含信任信息的修正,以提高推荐准确度;最后,通过加权Slope One(WSO)算法对矩阵填充与信任相似度信息加以整合,并对评分数据进行预测。在Epinions与Ciao数据集中验证算法性能,可见所提出混合推荐算法较组成算法在推荐准确度上提升3%以上,较现有社会化推荐算法SocialIT(Social recommendation algorithm based on Implict similarity in Trust)在推荐准确度上提升1.2%以上。实验结果表明,所提出的基于评分填充与信任信息的混合推荐算法在一定程度上提高了推荐准确度。  相似文献   

19.
针对个性化商品推荐方法中普遍存在的推荐准确率不高的问题,提出一种集成用户信任度和品牌认可度的商品推荐方法(TBCRMI)。该方法通过分析用户的购买行为和评价行为,计算得到用户对商品品牌的认可度和用户自身的活跃度;然后利用DBSCAN(Density-Based Spatial Clustering of Applications with Noise)算法对用户进行聚类,并在此基础上融合用户信任关系,采用Top-K方法得到近邻关系;最后,依据近邻关系生成目标用户商品推荐列表。为了验证算法的有效性,使用Amazon Food和Unlocked Mobile phone两个数据集,选择基于用户的协同过滤算法(UserCF)、融合用户信任的协同过滤推荐算法(SPTUserCF)与合并用户信任的协同过滤算法(MTUserCF),对准确率、召回率和F1值等指标进行了对比分析。实验结果表明,无论是多品牌综合推荐还是单一品牌推荐,TBCRMI在各项指标均优于目前常用的个性化商品推荐方法。  相似文献   

20.
针对关联规则个性化好友推荐中规则挖掘效率及推荐有效性不高的问题,首先提出基于散列及位图的改进关联规则算法BHA。该算法通过引入散列技术,减少了频繁2项集挖掘所需的时间;利用位图及相关性质,压缩无关候选项,减少了数据集所需的遍历次数。另外,在BHA的基础上,提出基于相似度及信任度的推荐算法STA,利用出、入相似度定义信任度,有效解决了新浪微博未提供显示信任关系的问题,同时弥补了相似度推荐未考虑用户间远近层次关系的缺陷。采集新浪微博用户数据进行实验,在关联规则挖掘效率的对比上,BHA挖掘所需的平均时间仅为改进AprioiriTid算法的47%;在好友推荐的有效性上,推荐算法STA较SNFRBOAR算法在准确率及召回率上分别提升了15.2%和9.8%。实验结果表明,STA能够有效降低规则挖掘所需的平均时间,并使实际好友推荐的有效性得到提升。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号