首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
C60 and picene thin film field-effect transistors (FETs) in bottom contact structure have been fabricated with poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) electrodes for a realization of mechanical flexible organic FETs. The C60 thin film FETs showed n-channel enhancement-type characteristics with the field-effect mobility μ value of 0.41 cm2 V?1 s?1, while the picene thin film FET showed p-channel enhancement-type characteristics with the μ of 0.61 cm2 V?1 s?1. The μ values recorded for C60 and picene thin film FETs are comparable to those for C60 and picene thin film FETs with Au electrodes.  相似文献   

2.
Gelatin is a natural protein, which works well as the gate dielectric for pentacene/N,N-dioctyl-3,4,9,10-perylene tetracarboxylic diimide (PTCDI-C8) ambipolar organic field-effect transistors (OFETs) in air ambient and in vacuum. An aqueous solution process was used to form the gelatin gate dielectric film on poly(ethylene terephthalate) (PET) by spin-coating and subsequent casting. Pentacene morphology and interface roughness are two major factors affecting the electron and hole field-effect mobility (μFE) values of pentacene/PTCDI-C8 ambipolar OFETs in vacuum and in air ambient. In contrast, water absorption in gelatin has higher contribution to the electron and hole μFE values in air ambient. The ambipolar performance of pentacene/PTCDI-C8 ambipolar OFETs depends on their layer sequence. For example, when PTCDI-C8 is deposited onto pentacene, i.e. in the structure of PTCDI-C8/pentacene, unbalanced ambipolar characteristics appear. In contrast, better ambipolar performance occurs in the structure of pentacene/PTCDI-C8. The optimum ambipolar characteristics with electron μFE of 0.85 cm2 V−1 s−1 and hole μFE of 0.95 cm2 V−1 s−1 occurs at the condition of pentacene (40 nm)/PTCDI-C8 (40 nm). Surprisingly, water absorption plays a crucial role in ambipolar performance. The device performance changes tremendously in pentacene/PTCDI-C8 ambipolar OFETs due to the removal of water out of gelatin in vacuum. The optimum ambipolar characteristics with electron μFE of 0.008 cm2 V−1 s−1 and hole μFE of 0.007 cm2 V−1 s−1 occurs at the condition of pentacene (65 nm)/PTCDI-C8 (40 nm). The roles of layer sequence, relative layer thickness, and water absorption are proposed to explain the ambipolar performance.  相似文献   

3.
A new thieno[3,2-b]thiophenediketopyrrolopyrrole-benzo[1,2-b:4,5-b′]dithiophene based narrow optical gap co-polymer (PTTDPP-BDT) has been synthesized and characterized for field-effect transistors and solar cells. In field-effect transistors the polymer exhibited ambipolar charge transport behaviour with maximum hole and electron mobilities of 10−3 cm2 V−1 s−1 and 10−5 cm2 V−1 s−1, respectively. The respectable charge transporting properties of the polymer were consistent with X-ray diffraction measurements that showed close molecular packing in the solid state. The difference in hole and electron mobilities was explained by density functional theory calculations, which showed that the highest occupied molecular orbital was delocalized along the polymer backbone with the lowest unoccupied molecular orbital localized on the bis(thieno[3,2-b]thiophene)diketopyrrolopyrrole units. Bulk heterojunction photovoltaic devices with the fullerene acceptor PC70BM were fabricated and delivered a maximum conversion efficiency of 3.3% under AM1.5G illumination.  相似文献   

4.
A high-performing bottom-gate top-contact pentacene-based oTFT technology with an ultrathin (25–48 nm) and electrically dense photopatternable polymeric gate dielectric layer is reported. The photosensitive polymer poly((±)endo,exo-bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid, diphenylester) (PNDPE) is patterned directly by UV-exposure (λ = 254 nm) at a dose typical for conventionally used negative photoresists without the need for any additional photoinitiator. The polymer itself undergoes a photo-Fries rearrangement reaction under UV illumination, which is accompanied by a selective cross-linking of the macromolecules, leading to a change in solubility in organic solvents. This crosslinking reaction and the negative photoresist behavior are investigated by means of sol–gel analysis. The resulting transistors show a field-effect mobility up to 0.8 cm2 V−1 s−1 at an operation voltage as low as −4.5 V. The ultra-low subthreshold swing in the order of 0.1 V dec−1 as well as the completely hysteresis-free transistor characteristics are indicating a very low interface trap density. It can be shown that the device performance is completely stable upon UV-irradiation and development according to a very robust chemical rearrangement. The excellent interface properties, the high stability and the small thickness make the PNDPE gate dielectric a promising candidate for fast organic electronic circuits.  相似文献   

5.
The synthesis of two new thieno(bis)imide (TBI, N) end functionalized oligothiophene semiconductors is reported. In particular, trimer (NT3N) and pentamer (NT5N) have been synthesized and characterized. Two different synthetic approaches for their preparation were tested and compared namely conventional Stille cross coupling and direct arylation reaction via C–H activation. Theoretical calculations, optical and electrochemical characterization allowed us to assess the role of the π-conjugation extent, i.e., of the oligomer size on the optoelectronic properties of these materials. In both TBI ended compounds, due to the strong localization of the LUMO orbital on the TBI unit, the LUMO energy is almost insensitive to the oligomer size, this being crucial for the fine-tailoring of the energy and the distribution of the frontier orbitals. Surprisingly, despite its short size and contrarily to comparable TBI-free analogues, NT3N shows electron charge transport with mobility up to μN = 10−4 cm2 V−1 s−1, while increasing the oligomer size to NT5N promotes ambipolar behavior and electroluminescence properties with mobility up to μN = 0.14 cm2 V−1 s−1 and to μP = 10−5 cm2 V−1 s−1.  相似文献   

6.
Single crystal field-effect transistors (FETs) using [6]phenacene and [7]phenacene show p-channel FET characteristics. Field-effect mobilities, μs, as high as 5.6 × 10?1 cm2 V?1 s?1 in a [6]phenacene single crystal FET with an SiO2 gate dielectric and 2.3 cm2 V?1 s?1 in a [7]phenacene single crystal FET were recorded. In these FETs, 7,7,8,8-tetracyanoquinodimethane (TCNQ) was inserted between the Au source/drain electrodes and the single crystal to reduce hole-injection barrier heights. The μ reached 3.2 cm2 V?1 s?1 in the [7]phenacene single crystal FET with a Ta2O5 gate dielectric, and a low absolute threshold voltage |VTH| (6.3 V) was observed. Insertion of 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) in the interface produced very a high μ value (4.7–6.7 cm2 V?1 s?1) in the [7]phenacene single crystal FET, indicating that F4TCNQ was better for interface modification than TCNQ. A single crystal electric double-layer FET provided μ as high as 3.8 × 10?1 cm2 V?1 s?1 and |VTH| as low as 2.3 V. These results indicate that [6]phenacene and [7]phenacene are promising materials for future practical FET devices, and in addition we suggest that such devices might also provide a research tool to investigate a material’s potential as a superconductor and a possible new way to produce the superconducting state.  相似文献   

7.
Bovine serum albumin (BSA) is a natural protein with good hydration ability which contains acidic and basic amino acid residues of ca. 34% in total. In vacuum, pentacene organic field-effect transistors (OFETs) with BSA as the gate dielectric exhibits a field-effect mobility value (μFE,sat) of 0.3 cm2 V−1 s−1 in the saturation regime and a threshold voltage (VTH) of ca. −16 V. BSA is easy to be hydrated in air ambient. Electrical properties of BSA in vacuum and hydrated BSA in air ambient are characterized. Similar to polyelectrolyte, hydrated BSA may act the gate dielectric with the formation of electric double-layer capacitors (EDLCs) to improve the device performance. In a relative humidity of 47%, the μFE,sat value increases to 4.7 cm2 V−1 s−1 and the VTH reduces to −0.7 V. Generation of mobile ions in hydrated BSA and the formation of EDLCs are discussed.  相似文献   

8.
We have fabricated flexible field-effect transistors (FETs) using poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)], PCDTBT, as an active channel, poly(methyl methacrylate) (PMMA) as gate dielectric and biaxially oriented polyethyleneterephthalate (BOPET) as supporting substrate. The output and transfer characteristics of the devices were measured as a function of channel length. It has been observed that various OFET parameters viz. on–off ratio (∼105), mobility (μ ∼ 10−4 cm2 V−1 s−1), threshold voltage (Vth ∼ −14 V), switch-on voltage (Vso ∼ −6 V), subthreshold slope (S ∼ 7 V/decade) and trap density (Nit ∼ 1014 cm−2 V−1) are almost independent of the channel length, which suggested a very high uniformity of the PCDTBT active layer. These devices were highly stable under atmospheric conditions (temperature: 20–35 °C and relative humidity: 70–85%), as no change in mobility was observed on a continuous exposure for 70 days. The studies on the effect of strain on mobility revealed that devices are stable up to a compressive or tensile strain of 1.2%. These results indicate that PCDTBT is a very promising active layer for the air stable and flexible FETs.  相似文献   

9.
Medium-band-gap polymers based on indacenodithiophene (IDT) and dibenzothiophene-S,S-dioxide (SO) derivatives, PIDT-SO and PIDT-DHTSO, were synthesized via a microwave assisted Stille polycondensation. The polymers have the maximum absorption ∼500 nm, high absorption coefficients above 0.6 × 10−2 nm−1, and medium band gaps of ∼2.2 eV. Their hole mobilities are around 2 × 10−4 cm2 V−1 s−1 as measured by field effect transistors. The photovoltaic performances of the polymers were investigated on the inverted bulk heterojunction (BHJ) devices of ITO/PFN/PIDT-DHTSO:PC71BM (1:3, w/w)/MoO3/Al, and a power conversion efficiency (PCE) of 3.81% with an open-circuit voltage (Voc) of 0.95 V, a short-circuit current (Jsc) of 8.20 mA cm−2 and a fill factor (FF) of 48% were achieved. Those results indicated that dibenzothiophene-S,S-dioxide derivatives could be an excellent electron-deficient building block for medium-band-gap electron-donor polymers.  相似文献   

10.
High performance n-type F16CuPc organic thin-film transistors (OTFTs) were fabricated on polyethylene terephthalate (PET) using silk fibroin as the gate dielectric. The average field-effect mobility (μFE) value in the saturation regime is 0.39 cm2 V−1 s−1 approximately one order of magnitude higher than the reported values in the literature. A typical F16CuPc OTFT exhibits an on/off current ratio of 9.3 × 102, a low threshold voltage of 0.65 V, and a subthreshold swing value of 730 mV/decade. The enhancement of μFE results from very good crystal quality of F16CuPc on silk fibroin, supported by grazing incidence X-ray diffraction (GIXD) data.  相似文献   

11.
C60-based organic thin film transistors (OTFTs) with high electron mobility and high operational stability are achieved with (1 1 1) oriented C60 films grown by using template effects of diindenoperylene (DIP) under layer on the SiO2 gate insulator. The electron mobility of the C60 transistor is significantly increased from 0.21 cm2 V−1 s−1 to 2.92 cm2 V−1 s−1 by inserting the template-DIP layer. Moreover much higher operational stability is also observed for the DIP-template C60 OTFTs. A grazing incidence X-ray diffraction and ultrahigh-sensitivity photoelectron spectroscopy measurements indicate that the improved electron mobility and stability arise from the decreased density of trap states in the C60 film due to increased (1 1 1) orientation of C60-grains and their crystallinity on the DIP template.  相似文献   

12.
We report a formation of a solution-grown single crystal wire mask for the fabrication of short-channel organic field-effect transistor with enhanced dynamic response time. The various channel length, ranging from submicrometer to a few micrometers, were obtained by controlling the concentration of solution and processing conditions. We fabricated p- and n-channel bottom-contact organic field-effect transistors using pentacene and PTCDI-C13, respectively, and static and dynamic electrical characteristics of the devices were investigated. The highest and average field-effect hole mobility values were found to be 0.892 cm2/V s and 0.192 cm2/V s, respectively. The load type inverter based on the short-channel transistor connected with a 2 MΩ resistor showed a clear switching response when square wave input signals up to 1 kHz were applied at VDD = −60 V.  相似文献   

13.
In this work, a series of conjugated polymers based on diketopyrrolopyrrole (DPP) and dithienothiophene were designed for application in field-effect transistors (FETs). Owing to the synthetic nature of DPP units, the DPP polymers here contain different aromatic linkers with thiophene and methylthiophene, resulting in non-methylated and methylated DPP polymers. Methylated DPP polymers were found to show good crystalline properties and provide high hole mobilties up to 5.32 cm2 V−1 s−1 in FETs, while non-methylated polymer exhibits a hole mobility of 3.16 cm2 V−1 s−1. Especially, the polymer containing asymmetric linkers presents “face-on” orientation in thin films but provides the highest mobility. Our results reveal that the polymers incorporating methyl units as side chains can be used to realize high carrier mobility in FETs.  相似文献   

14.
The design, fabrication and analysis of a low voltage electroosmotic (eo) pump with integrated Ag/AgCl electrodes are shown. The fabrication was based on casting the hydrophilic polymer NOA63, capping the NOA63 trenches with a glass-slide and subsequently depositing Ag/AgCl electrodes by a flow of electroless solution and structuring the electrodes by microfluidic stopvalves. The herewith obtained eo pump embedded into the microfluidic system had a capillary cross-section of 65 μm × 55 μm and its flow rate was determined to be 0.12 nl s−1 V−1 Ueh within the range of applied voltages Ueh from −1.5 up to 1.5 V.  相似文献   

15.
Two new tris(phthalocyaninato) europium complexes Eu2(Pc)[Pc(OPh)8]2 (1) and Eu2[Pc(OPh)8]3 (2) [Pc = unsubstituted phthalocyaninate; Pc(OPh)8 = 2,3,9,10,16,17,23,24-octaphenoxyphthalocyaninate], were designed and synthesized. Introduction of different number of electron-withdrawing phenoxy substituents at the phthalocyanine periphery within the triple-decker complexes not only ensures their good solubility in conventional organic solvents, but more importantly successfully tunes their HOMO and LUMO levels into the range of air-stable ambipolar organic semiconductor required on the basis of electrochemical studies over both 1 and 2, meanwhile fine controlling of aggregation mode (H vs. J) in solution-based film for improving OTFT performance is also achieved. Measurements over the OTFT devices fabricated from these sandwich compounds by a solution-based quasi–Langmuir–Shäfer (QLS) method reveal their ambipolar semiconductor nature associated with suitable HOMO and LUMO energy levels. Due to the H-aggregation mode employed by the heteroleptic triple-decker molecules in the QLS film, excellent performances with the electron and hole mobility in air as high as 0.68 and 0.014 cm2 V−1 s−1, respectively, have been revealed for the OTFT devices of heteroleptic triple-decker 1. This represents the best performance so far for solution-processable ambipolar single-component phthalocyanine-based OTFTs obtained under ambient conditions. In good contrast, homoleptic analogue 2 prefers to J-type aggregation and this results in relatively lower electron and hole mobility, around 0.041 and 0.0026 cm2 V−1 s−1 in air, respectively, for the devices fabricated. In particular, the performance of the devices fabricated based on 1 was found to remain almost unchanged in terms of both the carrier mobilities and on/off ratio even after being stored under ambient for 4 months.  相似文献   

16.
Solution processable diketopyrrolopyrrole (DPP)-bithiophene polymers (PDBT) with long branched alkyl side chains on the DPP unit are synthesized. These polymers have favourable highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels for the injection and transport of both holes and electrons. Organic thin film transistors (OTFTs) using these polymers as semiconductors and gold as source/drain electrodes show typical ambipolar characteristics with very well balanced high hole and electron mobilities (μh = 0.024 cm2 V?1 s?1 and μe = 0.056 cm2 V?1 s?1). These simple and high-performing polymers are promising materials for ambipolar organic thin film transistors for low-cost CMOS-like logic circuits.  相似文献   

17.
A novel easily made thienoacene-based organic semiconductor, i.e., dinaphtho[3,4-d:3′,4′-d′]benzo[1,2-b:4,5-b′]dithiophene (Ph5T2), was synthesized in high yield, and its thermal stability, electrochemical properties, thin-film morphology and field-effect mobility were investigated. Ph5T2 exhibit excellent thermal stability with a decomposition temperature (Td) of 427 °C. Thin-film X-ray diffraction (XRD) and atomic force microscopy (AFM) characterizations indicate that Ph5T2 can form highly ordered films with large domain size on the para-sexiphenyl (6P)-modified substrates. Organic thin-film transistors (OTFTs) with top-contact geometry based on Ph5T2 exhibit mobilities up to 1.2 cm2 V−1 s−1 in ambient. The devices are highly stable and exhibit almost no performance degradation during 3 months storage under ambient conditions with relative humidity up to 80%.  相似文献   

18.
We report the electrical transport of the Si nanowires in a field-effect transistor (FET) configuration, which were synthesized from B-doped p-type Si(1 1 1) wafer by an aqueous electroless etching method based on the galvanic displacement of Si by the reduction of Ag+ ions on the wafer surface. The FET performance of the as-synthesized Si nanowires was investigated and compared with Ag-nanoparticles-removed Si nanowires. In addition, high-k HfO2 gate dielectric was applied to the Si nanowires FETs, leading to the enhanced performance such as higher drain current and lower subthreshold swing.  相似文献   

19.
A systematical investigation on solvent-vapor annealing in polymer thin film transistors is performed using a thiazolothiazole-bithiazole conjugated polymer as the active layer. Film morphology, packing order and device performance are closely related to polarity and solubility parameter of the annealing solvent and annealing time. The formation of highly ordered and closely connected fibrillar domains is realized by using a solvent with similar solubility parameter and polarity to the conjugated polymer. Field-effect transistors based on pristine polymer films exhibit a highest charge carrier mobility of 0.0067 cm2 V−1 s−1. After solvent vapor annealing with THF for 48 h, the mobility boosts up to 0.075 cm2 V−1 s−1. This correlation between solvent polarity, solubility parameter and film morphology, packing order and mobility provides a useful guideline towards high performance polymer thin film transistors with solvent-vapor annealing method.  相似文献   

20.
Buckminsterfullerene, C60-based planar heterojunction (PHJ) organic photovoltaics (OPVs) have been created using a short wavelength absorption (λmax = 490 nm) electron-donating bis(naphthylphenylaminophenyl)fumaronitrile (NPAFN). NPAFN exhibits a hole mobility greater than 0.07 cm2 V−1 s−1 as determined by its field-effect transistor. It can be attributed to such hole mobility that enables a thin layer (<10 nm) NPAFN in PHJ OPV, ITO/NPAFN/C60/bathocuproine/Al. Because of the low lying HOMO energy level (5.75 eV) of NPAFN and relatively high ionization potential ITO (∼5.58 eV), such OPVs exhibit a very high open circuit voltage of ∼1.0 V, relatively high fill factor of 0.60, and a relatively high shunt resistance of 1100 Ω cm−2, which all compensate for a relatively low short circuit current of 3.15 mA cm−2 due to the short absorption wavelength and inferred short exciton diffusion length of NPAFN. Altogether, NPAFN OPVs display a power conversion efficiency (ηPC) of 2.22%, which is better than other long wavelength absorption materials in similar PHJ OPVs, such as pentacene (λmax 670 nm, HOMO 5.12 eV, ηPC 1.50%) and copper phthalocyanine (λmax 624, 695 nm, HOMO 5.17 eV, ηPC 1.43%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号