首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on charge transport and density of trap states (trap DOS) in ambipolar diketopyrrolopyrrole-benzothiadiazole copolymer thin-film transistors. This semiconductor possesses high electron and hole field-effect mobilities of up to 0.6 cm2/V-s. Temperature and gate-bias dependent field-effect mobility measurements are employed to extract the activation energies and trap DOS to understand its unique high mobility balanced ambipolar charge transport properties. The symmetry between the electron and hole transport characteristics, parameters and activation energies is remarkable. We believe that our work is the first charge transport study of an ambipolar organic/polymer based field-effect transistor with room temperature mobility higher than 0.1 cm2/V-s in both electrons and holes.  相似文献   

2.
A systematical investigation on solvent-vapor annealing in polymer thin film transistors is performed using a thiazolothiazole-bithiazole conjugated polymer as the active layer. Film morphology, packing order and device performance are closely related to polarity and solubility parameter of the annealing solvent and annealing time. The formation of highly ordered and closely connected fibrillar domains is realized by using a solvent with similar solubility parameter and polarity to the conjugated polymer. Field-effect transistors based on pristine polymer films exhibit a highest charge carrier mobility of 0.0067 cm2 V−1 s−1. After solvent vapor annealing with THF for 48 h, the mobility boosts up to 0.075 cm2 V−1 s−1. This correlation between solvent polarity, solubility parameter and film morphology, packing order and mobility provides a useful guideline towards high performance polymer thin film transistors with solvent-vapor annealing method.  相似文献   

3.
Thin-film field-effect transistors (FETs) are widely used to evaluate charge transport properties of semiconducting polymers. Discovery of high performance materials require design and synthesis of new polymers. However, most polymers require multi-step synthesis and are difficult to be obtained in a large scale for comprehensive device evaluations. Here, we report a simple method to cast semiconducting polymer films from solutions with polymer concentration as low as 0.5 mg/mL, which is substantially less than typical values (∼10 mg/mL) used in conventional spin coating method. Here, we demonstrate that using this method, our cast films of a previously-reported polymer (PDPP-TT2T) exhibited field-effect mobility (μhole = 0.89 ± 0.13 cm2 V−1 s−1, μe = 0.025 ± 0.005 cm2 V−1 s−1), which is comparable to the reported values using the same device geometry. Furthermore, we extend this method to examine cast films of a pair of polymers (PDPP-3T-Ref, PDPP-3T-Si) to study the effect of siloxane substitution in the side chains on the molecular packing and their subsequent FET performance. We observed that shorter π-stacking distance (3.61 Å) for the siloxane-terminated polymer, when compared to that for the reference polymer (3.73 Å), resulted in improved FET performance (e.g., μhole = 0.63 ± 0.046 cm2 V−1 s−1 for PDPP-3T-Si vs μhole = 0.17 ± 0.062 cm2 V−1 s−1 for PDPP-3T-Ref). Taken together, this work presents an efficient alternative film-casting approach to produce polymer FETs that consumes much less material for their fabrication, lending viability for evaluation of various polymeric materials.  相似文献   

4.
Bis(pyrrolo[3,4-c]pyrrole-1,3(2H,5H)-dione) (BDPPD)-based new electron deficient monomer unit (TTBDPPD) incorporating thieno[3,2-b]thiophene as a connecting spacer unit in between pyrrolo[3,4-c]pyrrole-1,3(2H,5H)-dione units was prepared. The copolymerization of 2D-conjugated benzodithiophene (BDTT) and TTBDPPD derivatives afforded new alternating copolymer P(BDTT-TTBDPPD). The estimated optical band gap and highest occupied molecular orbital (HOMO)/lowest unoccupied molecular orbital (LUMO) energy levels of P(BDTT-TTBDPPD) were 2.06 eV and −5.42 eV/−3.36 eV, respectively. The organic field effect transistor made form P(BDTT-TTBDPPD) exhibited a hole mobility of 6.21 × 10−4 cm2V−1s−1. The polymer solar cells (PSCs) prepared using P(BDTT-TTBDPPD):PC70BM (1:2 wt%)+3 vol% DIO blend offered a maximum power conversion efficiency (PCE) of 5.37% with an open-circuit voltage (Voc) of 0.90 V, a short-circuit current (Jsc) of 8.94 mA/cm2 and a fill factor (FF) of 67%. This study reveals that the photovoltaic performance of BDPPD-based reported polymer, P(BDTT-TBDPPD), incorporating thiophene spacer unit in between pyrrolo[3,4-c]pyrrole-1,3(2H,5H)-dione units has been greatly improved (over 2%) when thiophene replaced with thieno[3,2-b]thiophene.  相似文献   

5.
Electroless-plated gold and platinum films are used as source and drain electrodes in high-performance solution-processed organic field-effect transistors (OFETs), representing a promising large-area, near-room-temperature and vacuum-free technique to form low-resistance metal-to-semiconductor interfaces in ambient atmosphere. Developing non-displacement conditions using a Pt-colloidal catalyst for soft electroless plating, the electrodes are deposited on crystallized thin films of 2,9-didecyl-dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (C10-DNTT) without significant damage to the semiconductor material. The top-contact OFETs show remarkable performance, with a mobility of 6.0 cm2 V?1 s?1. The method represents a practical fabrication technique to mass-produce circuitry arrays of nearly best-performing OFETs for the printed electronics industry.  相似文献   

6.
Facile one‐pot [1 + 1 + 2] and [2 + 1 + 1] syntheses of thieno[3,2‐b]thieno[2′,3′:4,5]thieno[2,3‐d]thiophene (tetrathienoacene; TTA) semiconductors are described which enable the efficient realization of a new TTA‐based series for organic thin‐film transistors (OTFTs). For the perfluorophenyl end‐functionalized derivative DFP‐TTA , the molecular structure is determined by single‐crystal X‐ray diffraction. This material exhibits n‐channel transport with a mobility as high as 0.30 cm2V?1s?1 and a high on‐off ratio of 1.8 × 107. Thus, DFP‐TTA has one of the highest electron mobilities of any fused thiophene semiconductor yet discovered. For the phenyl‐substituted analogue, DP‐TTA , p‐channel transport is observed with a mobility as high as 0.21 cm2V?1s?1. For the 2‐benzothiazolyl (BS‐) containing derivative, DBS‐TTA , p‐channel transport is still exhibited with a hole mobility close to 2 × 10?3 cm2V?1s?1. Within this family, carrier mobility magnitudes are strongly dependent on the semiconductor growth conditions and the gate dielectric surface treatment.  相似文献   

7.
Top-contact self-assembled monolayer field-effect transistors (SAMFETs) were fabricated through both spin-coating and solution assembly of a semiconducting phosphonic acid-based molecule (11-(5?-butyl-[2,2′;5′,2″;5″,2?;5?,2?]quinquethiophen-5-yl)undecylphosphonic acid) (BQT-PA). The field-effect mobilities of both spin-cast and solution assembled SAMFETs were 1.1-8.0 × 10−6 cm2 V−1 s−1 for a wide range of channel lengths (between 12 and 80 μm). The molecular monolayers were characterized by atomic force microscopy (AFM), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. It was found that the BQT-PA monolayer films exhibit dense surface coverage, bidentate binding, and tilt angles of ∼32° and ∼44° for the thiophene rings and alkyl chain, respectively. These results indicate that rapid throughput of fabricating SAMFETs is possible even by spin-coating.  相似文献   

8.
The charge transport property of two triisopropylsilylethynyl anthracene (TIPSAnt) derivatives TIPSAntBt and TIPSAntNa (bithiophene and naphthalene are introduced at the 2, 6-positions of the TIPSAnt core) were explored through quantum chemical method. To gain a better understanding of the substituent effect on the charge transport property, the results of the parent molecule TIPSAnt was also provided here for comparison. The substituent effect on the molecular geometry, reorganization energy, frontier orbitals, ionization potential (IP) and electronic affinity (EA), crystal property, transfer integrals and charge mobility, band structure and effective mass of the two compounds were investigated to establish the relationship between structures and properties. The introduced bulky TIPS groups made the two compounds adopt two-dimensional, face-to-face, π-stacking structures. The efficient overlaps of π-orbital and smaller π-stacking distance are proved to be the main reason for the high charge mobility of TIPSAntBt and TIPSAntNa. The hole mobilities of TIPSAntBt and TIPSAntNa are 0.88 and 3.60 cm2 V−1 s−1, respectively, which is well consistent with experiment values (0.2 and 3.7 cm2 V−1 s−1, respectively). For TIPSAntBt, the electron mobility (1.29 cm2 V−1 s−1) is a little higher than that of hole due to the more effective transfer integrals of electron. On the contrary, the hole mobility of TIPSAntNa is 20 times larger than that of electron because of the smaller reorganization energy and larger transfer integral of hole, indicating that TIPSAntNa could be used as p-type semiconductor. For TIPSAntBt, the transfer integral is smaller than the reorganization energy, so the hopping mechanism plays a key role in the charge transport property. While the bandwidths and effective mass of TIPSAntNa agreed well with the calculated transfer integrals and charge mobility results. The introduced small substituents to TIPSAnt core contributed to the dramatically different charge transport property from an n-type semiconductor of TIPSAntBt to p-type semiconductor of TIPSAntNa, which shed light on molecular design for an n-type semiconductor through simple chemical structural modification.  相似文献   

9.
Control of the threshold voltage and the subthreshold swing is critical for low voltage transistor operation. In this contribution, organic field-effect transistors (OFETs) operating at 1 V using ultra-thin (∼4 nm), self-assembled monolayer (SAM) modified aluminium oxide layers as the gate dielectric are demonstrated. A solution-processed donor–acceptor semiconducting polymer poly(3,6-di(2-thien-5-yl)-2,5-di(2-octyldodecyl)-pyrrolo[3,4-c]pyrrole-1,4-dione)thieno[3,2-b]thiophene) (PDPP2TTT) is used as the active layer. It is shown that the threshold voltage of the fabricated transistors can be simply tuned by carefully controlling the composition of the applied SAM. The optimised OFETs display threshold voltages around 0 V, low subthreshold slopes (150 ± 5 mV/dec), operate with negligible hysteresis and show average saturated field-effect mobilities in excess of 0.1 cm2/V s at 1 V.  相似文献   

10.
A novel acceptor building block, 3,7-bis((E)-2-oxoindolin-3-ylidene)-3,7-dihydrobenzo[1,2-b:4,5-b′]dithiophene-2,6-dione (IBDT), is developed to construct a donor-acceptor polymer PIBDTBT-40. This polymer has favorable highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels for balanced ambipolar charge transport. Organic thin film transistors (OTFTs) based on this polymer shows well-balanced ambipolar characteristics with electron mobility of 0.14 cm2 V−1 s−1 and hole mobility of 0.10 cm2 V−1 s−1 in bottom-gate bottom-contact devices. This polymer is a promising semiconductor for solution processable organic electronics such as CMOS-like logic circuits.  相似文献   

11.
We have demonstrated top-gate polymer field-effect transistors (FETs) with ultra-thin (30–50 nm), room-temperature crosslinkable polymer gate dielectrics based on blending an insulating base polymer such as poly(methyl methacrylate) with an organosilane crosslinking agent, 1,6-bis(trichlorosilyl)hexane. The top-gate polymer transistors with thin gate dielectrics were operated at gate voltages less than ?8 V with a relatively high dielectric breakdown strength (>3 MV/cm) and a low leakage current (10–100 nA/mm2 at 2 MV/cm). The yield of thin gate dielectrics in top-gate polymer FETs is correlated with the roughness of underlying semiconducting polymer film. High mobilities of 0.1–0.2 cm2/V s and on and off state current ratios of 104 were achieved with the high performance semiconducting polymer, poly(2,5-bis(3-alkylthiophen-2yl)thieno[3,2-b]thiophene.  相似文献   

12.
Gelatin is a natural protein, which works well as the gate dielectric for pentacene/N,N-dioctyl-3,4,9,10-perylene tetracarboxylic diimide (PTCDI-C8) ambipolar organic field-effect transistors (OFETs) in air ambient and in vacuum. An aqueous solution process was used to form the gelatin gate dielectric film on poly(ethylene terephthalate) (PET) by spin-coating and subsequent casting. Pentacene morphology and interface roughness are two major factors affecting the electron and hole field-effect mobility (μFE) values of pentacene/PTCDI-C8 ambipolar OFETs in vacuum and in air ambient. In contrast, water absorption in gelatin has higher contribution to the electron and hole μFE values in air ambient. The ambipolar performance of pentacene/PTCDI-C8 ambipolar OFETs depends on their layer sequence. For example, when PTCDI-C8 is deposited onto pentacene, i.e. in the structure of PTCDI-C8/pentacene, unbalanced ambipolar characteristics appear. In contrast, better ambipolar performance occurs in the structure of pentacene/PTCDI-C8. The optimum ambipolar characteristics with electron μFE of 0.85 cm2 V−1 s−1 and hole μFE of 0.95 cm2 V−1 s−1 occurs at the condition of pentacene (40 nm)/PTCDI-C8 (40 nm). Surprisingly, water absorption plays a crucial role in ambipolar performance. The device performance changes tremendously in pentacene/PTCDI-C8 ambipolar OFETs due to the removal of water out of gelatin in vacuum. The optimum ambipolar characteristics with electron μFE of 0.008 cm2 V−1 s−1 and hole μFE of 0.007 cm2 V−1 s−1 occurs at the condition of pentacene (65 nm)/PTCDI-C8 (40 nm). The roles of layer sequence, relative layer thickness, and water absorption are proposed to explain the ambipolar performance.  相似文献   

13.
Ambipolar organic field-effect transistors (OFETs) based on a bilayer structure of highly crystalline small molecules, n-type α,ω-diperfluorohexylquaterthiophene (DFH-4T) and p-type dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (DNTT), are investigated. By employing DFH-4T/DNTT as the bottom/top layers and appropriate high work function (WF) electrodes in a bottom-gate, top-contact configuration, the superior ambipolar characteristics with matched electron and hole mobilities of 1–1.1 cm2 V−1 s−1 are achieved. Intriguingly, this high-performance device exhibits a unique feature of an extremely rough, nonplanar heterojunction in the DFH-4T/DNTT combination and a large electron injection barrier from the high WF electrodes to DFH-4T, suggesting some underlying mechanisms for the effective charge transport and injection. The electrical and structural analyses reveal that the crystal packing of the bottom DFH-4T layer supports the growth of a high-quality DNTT crystal network for high-mobility hole transport upon the nonplanar heterojunction, and also enables the formation of an enlarged organic/metal contact surface for efficient electron injection from the high WF electrodes, as the key attributes leading to an overall excellent ambipolar behavior. The effect of intrinsic charge accumulation at the heterojunction interface on the ambipolar conduction is also discussed. Furthermore, a complementary-like inverter constructed with two DFH-4T/DNTT ambipolar OFETs is demonstrated, which shows a gain of 30.  相似文献   

14.
A highly emissive red luminescent single crystal which shows aggregation induced emission (AIE) property and optical waveguide edge emission based on small organic functional molecule, cyano-substituted 2,5-di((E)-styryl)thieno[3,2-b]thiophene (CNP2V2TT) has been prepared by the physical vapor transport (PVT) method. The fluorescence quantum efficiency of crystal is up to 37% and an emission peak maximum (λmax) locates at 645 nm. Cystallographic data indicate that uniaxially oriented molecular packing with slipped face-to-face π-π stacking forms by the hydrogen bonding network among CNP2V2TT molecules. The single crystal FET devices were fabricated using Au and Ca as hole and electron injection electrodes, respectively. The molecular design, introducing cyano groups into molecular skeleton, effectively lower the LUMO level and achieve well-balanced ambipolar electron (0.13 cm2 V−1 s−1) and hole (0.085 cm2 V−1 s−1) mobilities.  相似文献   

15.
Bovine serum albumin (BSA) is a natural protein with good hydration ability which contains acidic and basic amino acid residues of ca. 34% in total. In vacuum, pentacene organic field-effect transistors (OFETs) with BSA as the gate dielectric exhibits a field-effect mobility value (μFE,sat) of 0.3 cm2 V−1 s−1 in the saturation regime and a threshold voltage (VTH) of ca. −16 V. BSA is easy to be hydrated in air ambient. Electrical properties of BSA in vacuum and hydrated BSA in air ambient are characterized. Similar to polyelectrolyte, hydrated BSA may act the gate dielectric with the formation of electric double-layer capacitors (EDLCs) to improve the device performance. In a relative humidity of 47%, the μFE,sat value increases to 4.7 cm2 V−1 s−1 and the VTH reduces to −0.7 V. Generation of mobile ions in hydrated BSA and the formation of EDLCs are discussed.  相似文献   

16.
The synthesis of two new thieno(bis)imide (TBI, N) end functionalized oligothiophene semiconductors is reported. In particular, trimer (NT3N) and pentamer (NT5N) have been synthesized and characterized. Two different synthetic approaches for their preparation were tested and compared namely conventional Stille cross coupling and direct arylation reaction via C–H activation. Theoretical calculations, optical and electrochemical characterization allowed us to assess the role of the π-conjugation extent, i.e., of the oligomer size on the optoelectronic properties of these materials. In both TBI ended compounds, due to the strong localization of the LUMO orbital on the TBI unit, the LUMO energy is almost insensitive to the oligomer size, this being crucial for the fine-tailoring of the energy and the distribution of the frontier orbitals. Surprisingly, despite its short size and contrarily to comparable TBI-free analogues, NT3N shows electron charge transport with mobility up to μN = 10−4 cm2 V−1 s−1, while increasing the oligomer size to NT5N promotes ambipolar behavior and electroluminescence properties with mobility up to μN = 0.14 cm2 V−1 s−1 and to μP = 10−5 cm2 V−1 s−1.  相似文献   

17.
Physical blending is a facile and effective way to improve the performance of solution processed organic thin-film transistors (OTFTs). Blending small molecule semiconductors with soluble polymers has been extensively studied in recent years. However, blending between binary small molecule semiconductors is rare due to the difficulty to obtain ideal thin films. Herein, we systematically investigate the blending effects on the morphologies of thin films and their field-effect performance by using two small molecule semiconductors, 2-phenyl[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT) and 2-(4-dodecylphenyl) [1]benzothieno[3,2-b]benzothiophene, (C12-Ph-BTBT), which have the same aromatic skeleton. Molecular ordering and better crystallinity are observed in most of spin-coated blend thin films, thanks to the enhanced molecular interaction after blending. As a result, OTFTs based on blend thin films exhibit improved performance in most cases, with the highest average hole mobility about 1.5 cm2 V−1 s−1 demonstrated. Further device performance improvements are demonstrated by blending polystyrene with Ph-BTBT and C12-Ph-BTBT blends. The results here indicate that blending between small molecule semiconductors with compatible fused ring structures may be a promising strategy to enhance the performance of organic transistors.  相似文献   

18.
Donor-acceptor polymers with narrow bandgaps are promising materials for bulk heterojunction solar cells and high-mobility field-effect transistors. They also emit light in the near-infrared. Here we investigate and compare the photoluminescence and electroluminescence properties of different narrow bandgap (<1.5 eV) donor-acceptor polymers with diketopyrrolopyrrole (DPP), isoindigo (IGT) and benzodipyrrolidone (BPT) cores, respectively. All of them show near-infrared photoluminescence quantum yields of 0.03–0.09% that decrease with decreasing bandgap. Bottom-contact/top-gate field-effect transistors show ambipolar charge transport with hole and electron mobilities between 0.02 and 0.7 cm2 V−1 s−1 and near-infrared electroluminescence. Their external quantum efficiencies reach up to 0.001%. The effect of polaron quenching and other reasons for the low electroluminescence efficiency of these high mobility polymers are investigated.  相似文献   

19.
The initial stage of organic film growth is considered to be vital for the carrier transport in organic thin-film transistors with bottom gate configuration. The same topographies of 40 nm dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (DNTT) films on para-sexiphenyl (p-6P) monolayer and bare SiO2 exhibited quite different field-effect mobilities, 1.9 and 0.1 cm2/V s, respectively. The further investigation indicated there were different growth behaviors at their initial stages of film growth. Column islands with high density were observed on SiO2, while lamina islands on p-6P monolayer due to the good diffusion ability and their good epitaxial relationship. The latter is beneficial to obtain high quality film with less boundaries and defects. The work demonstrated that the initial stage of film growth is an important factor to determine the device performance of organic transistors, which is significant to improve the device fabrication and optimize the device performance.  相似文献   

20.
The synthesis, characterization, and field‐effect transistor (FET) properties of a new class of thieno[3,2‐b]thieno[2′,3′:4,5]thieno[2,3‐d]thiophene derivatives are described. The optical spectra of their films show the presence of stronger interactions between molecules in the solid state. Thermal analyses reveal that the three materials are thermally stable and have no phase transitions at low temperature. The crystal structures are determined, and show π‐stacked structures and intermolecular S···S contacts. These organic materials exhibit p‐type FET behavior with hole mobilities as high as 0.14 cm2 V?1 s?1 and an on/off current ratio of 106. These results indicate that thieno[3,2‐b]thieno [2′,3′:4,5]thieno[2,3‐d]thiophene, as a linear π‐conjugated system, is an effective building block for developing high‐performance organic semiconductors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号