首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of highly efficient deep blue emitters comprising of carbazole and phenanthro[9,10-d]imidazole moieties are designed and synthesized. These compounds present deep blue emission, narrow FWHM, high quantum yields, high thermal and morphological stabilities. Among them, the design strategy of 2:1 ratio of phenanthro[9,10-d]imidazole and carbazole unit affords M2 with more balanced carrier injection and transporting properties. OLEDs using M2 as emitting layer is observed to deliver a truly deep blue CIE of y < 0.06 with a highest external quantum efficiency of 3.02%. By taking the full advantage of these deep blue emitters, they are further served as excellent hosts for fluorescent and phosphorescent dyes. High-performance green phosphorescent device based on M2/Ir(ppy)3 is attained with a maximum current efficiency of 33.35 cd A−1, a power efficiency of 22.99 lm W−1 and a maximum external quantum efficiency of 9.47%. When doped with an orange fluorescent material, upon careful tuning the doping proportion, the two-emitting-component white OLED is successfully fabricated with a maximum current efficiency of 5.53 cd A−1 and CIE coordinates of (0.313, 0.305). Both the non-doped and doped devices exhibited high operational stability with negligible efficiency roll-off over the broad current density range.  相似文献   

2.
Two spiro-annulated triphenylamine/fluorene oligomers, namely 4′-(9,9′-spirobifluoren-4-yl)-10-phenyl-10H-spiro[acridine-9,9′-fluorene] (NSF-SF), and 4,4′-di(spiro(triphenylamine-9,9′-fluorene)-2-yl)-spiro(triphenylamine-9,9′-fluorene) (NSF-NSF), are designed and synthesized. Their thermal, electrochemical and photophysical properties were investigated. The introduction of spiro-annulated triphenylamine moieties assurances the high HOMO energy levels of NSF-NSF and NSF-SF at −5.31 eV and −5.33 eV, respectively, which accordingly facilitates the hole injection from nearby hole-transporting layer. Meanwhile, the perpendicular arrangement of the spiro-conformation and the full ortho-linkage effectively prevents the extension of the π-conjugation and consequently guarantees their high triplet energies of 2.83 eV. Phosphorescent organic light-emitting devices (PhOLEDs) with the configurations of ITO/MoO3/TAPC/EML/TmPyPB/LiF/Al were fabricated by using the two compounds as host materials and bis[2-(4′,6′-difluorophenyl)pyridinato-N,C2′]iridium(III) picolate (FIrpic) as the dopant. The turn-on voltage of the device B based on NSF-NSF was 2.8 V. Simultaneously, the device exhibited excellent performance with the maximum current efficiency of 41 cd A−1, the maximum power efficiency of 42 lm W−1 and the maximum external quantum efficiency (EQE) of 19.1%. At a high brightness of 1000 cd m−2, the device remained EQE of 16.2% and the roll-off value of external quantum efficiency is 15%.  相似文献   

3.
Two novel orange cationic iridium complexes [(npy)2Ir(o-phen)]PF6 and [(npy)2Ir(c-phen)]PF6 were synthesized. Hnpy: 2-(naphthalen-1-yl)pyridine; o-phen: a 1,10-phenanthroline derivative containing an electron-transporting functional group of 2,5-diphenyl-1,3,4-oxadiazole and a crystallization-resistant tert-butyl functional group; c-phen: a 1,10-phenanthroline derivative containing a hole-transporting functional group of carbazole and a crystallization-resistant 2-ethylhexyl functional group. Both of them are amorphous and possess high thermal stability with 5% weight-reduction temperatures (ΔT5%) of 386 °C and 383 °C, and glass-transition temperatures (Tg) of 267 °C and 195 °C respectively. They were used as phosphorescent dopants in polymer light-emitting diodes (PLEDs) fabricated by solution-processed technology with configuration of ITO/PEDOT:PSS/PVK:PBD:iridium complex/TPBI/CsF/Al. At the optimal doping concentration of 2.0 wt%, the corresponding PLEDs exhibited the maximum current efficiencies of 9.1 cd A−1 and 10.0 cd A−1, the maximum external quantum efficiencies of 6.5% and 7.1%, and the maximum luminance of 2314 cd m−2 and 3157 cd m−2 respectively, with the same CIE coordinates of (0.57, 0.40). The results indicate that cationic iridium complexes are promising candidates for PLED applications when they are designed reasonably.  相似文献   

4.
We report on the fabrication of organic light-emitting devices (OLEDs) using double-block layers on the electron transport layer and emitting layer. The current efficiency of the organic light-emitting diode is improved by 43% to 9.16 cd A−1 as compared to the device with a single host of Alq3 as the electron transport layer. The maximum luminance is over 23 750 cd m−2 at the bias of 18 V and the current of 338.3 mA cm−2, which is 33% higher than the single host Alq3 device without block layer. Using a step-by-step procedure to smooth electron injection and transport, the energy levels introduced by the insertion layers are an effective method of improving the luminance characteristics.  相似文献   

5.
In this work, two novel bipolar host materials p-BPPI and m-BPPI containing phenanthroimidazole/dimesitylborane (Mes2B) with para- and meta-linkage have been designed, synthesized and characterized. The appending Mes2B moiety improves the thermal stability, electrochemical stability and carrier injection/transport ability of both target compounds. The test results of time-of-flight (TOF) and single-carrier devices show that both the new hosts possess bipolar charge-transporting characteristics. As a result, series of highly efficient green (66.3 cd A−1, 63.1 lm W−1, 18.2%), yellow (55.2 cd A−1, 66.6 lm W−1, 14.5%) and red (20.1 cd A−1, 20.4 lm W−1, 13.5%) PhOLEDs are achieved by using them as the universal host materials. The results indicate that bipolar host p-BPPI and m-BPPI have high potential in fabricating various color OLEDs for displays and lighting applications. Our study further enriches the selection of D and A group for phosphorescent host materials. The relationship between molecular structures and optoelectronic properties is discussed experimentally and theoretically.  相似文献   

6.
Homoleptic triscyclometalated iridium(III) complex Ir(dbi)3 was used as a dopant for sky blue phosphorescent organic light-emitting diodes (PHOLEDs). Its photophysical, thermal, electrochemical properties as well as the device performances were investigated. Ir(dbi)3 exhibited high quantum yield of 0.52 in solution at room temperature. A maximum current efficiency and external quantum efficiency (EQE) of 61.5 cd A−1 and 23.1% were obtained, which are the highest ever reported for blue homoleptic iridium complexes. High efficiencies of 53.5 cd A−1 and 20.1% EQE were achieved even at the luminance of 1000 cd m−2.  相似文献   

7.
A novel device concept was realized for simple single-layer small-molecule white organic light emitting devices. The single organic active layer here is simply comprised of a newly synthesized sky-blue fluorescent bipolar host (TPASO) and a common orange phosphorescent dopant. Suppressed singlet Föster energy transfer induced by a low-concentration doping and spontaneous high- to low-lying triplet energy transfer, respectively, lead to sky-blue fluorescence from TPASO and orange phosphorescence from the dopant. The resulting two-organic-component device exhibits a low turn-on voltage of 2.4 V, maximum current/power efficiencies up to 11.27 ± 0.02 cd A−1 and 14.15 ± 0.03 lm W−1, and a warm-white CIE coordinate of (0.42, 0.45) at 1000 cd m−2.  相似文献   

8.
Small-molecule based flexible organic light-emitting diodes (SMOLEDs) were fabricated by gravure printing. In order to modify rheological properties of the functional ink, the green emitter was embedded into an ultrahigh molecular weight polystyrene (UHMW-PS) matrix. The viscosity of the ink was characterized as a function of the small molecule:UHMW-PS weight ratio and solvent type. The gravure printed SMOLEDs exhibited a maximum luminance of 850 cd m−2, a maximum efficiency of up to 7.7 cd A−1, and turn on voltage of ∼3.5 V. The gravure printed SM:UHMW-PS device exhibits ∼67% higher luminance efficiency comparing to the spin-coated pristine SM device.  相似文献   

9.
We developed high-efficiency multi-photon emission (MPE) blue phosphorescent OLEDs with external quantum efficiency exceeding 40% at 100 cd m−2. In these MPE devices, we used a blue phosphorescent emitter, FIrpic and pyridine-containing electron-transporters, B3PyPB and B3PyMPM, B4PyMPM. We also used a well-known electron-transporter, BCP for comparison. We used a combination of TAPC/MoO3/Al/Liq layers as the charge-generation layer unit. An optimized MPE device showed an extremely high current efficiency of over 90 cd A−1 and a high power efficiency of over 40 lm W−1 at 100 cd m−2 without any outcoupling enhancement.  相似文献   

10.
In this work, we have synthesized a new phosphorescent iridium complex (Bppya)2Ir(acac), as an orange dopant for organic light-emitting diodes (OLEDs). The device achieved an external quantum efficiency (EQE) of 22.4%, a current efficiency of 49.5 cd A−1 and a power efficiency of 38.9 lm W−1, which are among the highest values for orange OLEDs. Furthermore, color stable and high efficiency phosphorescent white OLED (WOLED) was demonstrated by utilizing a mixed-host in the emissive layers (EMLs) composed of a blue phosphor and the new orange phosphorescent emitter, as well as by avoiding the use of interlayers that commonly exist between different EMLs in WOLEDs. Our WOLED presented decent white emission with maximum efficiencies of 25.3 cd A−1 and 12.6%. Furthermore, the 1931 Commission Internationale de l’Eclairage color coordinates exhibited extremely small variation of (0.3940 ± 0.0102, 0.4323 ± 0.0046) in a wide luminance range from 49 to 38,035 cd m−2 when driving voltages increased from 4 V to 12 V. The root cause for this excellent color stability is the utilization of the mixed-host to obtain bipolar transport properties in EMLs as well as the eliminating of interlayer between different EMLs, which, on one hand, effectively broaden the exciton recombination zone; on the other hand, reduce the accumulation of triplet excitons at the emissive interface.  相似文献   

11.
A new orange iridium phosphor of (EtPy)2Ir(acac) with thieno[3,2-c]pyridine derivative as cyclometalating ligand was designed and synthesized. The combination of thieno[3,2-c]pyridine with rigid fluorene moiety enlarged the π conjugation of ligand, and consequently caused the peak emission of (EtPy)2Ir(acac) red-shift to 588 nm. By using (EtPy)2Ir(acac) as the orange phosphor, the fully solution-processed PhOLEDs were fabricated with the following device configuration: ITO/PEDOT:PSS/PVK: PBD: (EtPy)2Ir(acac)/CsF/Al. With PEDOT:PSS 8000 as the hole-injecting material, the orange device achieved a maximum current efficiency of 13.4 cd A−1, a maximum power efficiency of 5.9 lm W−1 and a maximum external quantum efficiency (EQE) of 11.2% with a CIE coordinate of (0.62, 0.38) that falls into the orange–red region. Moreover, at high luminance of 1000 cd m−2, the device still remained high current efficiency of 8.7 cd A−1 and EQE of 7.3%. To the best of our knowledge, these efficiencies were among the highest ever reported for solution-processed orange–red PhOLEDs.  相似文献   

12.
A solution-processed, all-phosphor, three-color (i.e., blue, green, and red), alternating current-driven white field-induced polymer electroluminescent device (WFIPEL), with low operational voltage, high luminance, high efficiency, high color-rendering index (CRI), and excellent color-stability, was demonstrated. The devices employed poly(vinylidene fluoride–trifluoroethylene–chlorofluoroethylene) [P(VDF–TrFE–CFE)] dielectric modified by single-walled carbon nanotubes (SWNTs) to further improve the dielectric characteristics, as the insulating layer. This significantly lowers the driving voltage of the device. Moreover, hole-generation layer and electron-transporting layer with high conductivity were used to more efficiently form and confine excitons in the emissive layer. The resulting WFIPEL devices show significant improvements in performance as compared to previous reports. Specifically, the devices exhibit a low turn-on voltage of 10 V, a maximum luminance of 7210 cd m−2, a maximum current efficiency and power efficiency of 33.8 cd A−1 and 10.5 lm W−1, and a CRI of 82. The power efficiency is even 10 times higher than the highest previous report (1 lm W−1).  相似文献   

13.
Highly efficient and emitter concentration insensitive phosphorescent electroluminescent devices based on a novel rhenium(I) [Re(I)] complex, i.e., (4,5-diaza-9,9′-spirobifluorene)Re(CO)3Br (Re-DSBF), were established. Non-doped device based on Re-DSBF as emitter exhibited outstanding performances with the peak luminance of 8531 cd m−2 and maximum current efficiency of 16.8 cd A−1, which were the highest reported to date for non-doped phosphorescent electroluminescent devices based on Re(I) emitters. Such excellent performances are closely related to the steric hindrance, large Stokes shift, and short luminescent lifetime of Re-DSBF complex. The luminescent mechanisms of those devices were also investigated.  相似文献   

14.
Introducing the hole-transporting carbazole moiety into an aggregation-induced emissive tetraarylethene skeleton and attaching electron-transporting dimesitylboron groups to the periphery, we obtain two novel electroluminescent materials. Their structures are fully characterized by elemental analysis, mass spectrometry, NMR spectroscopy and X-ray crystallography. Furthermore, their thermal, electrochemical, as well as photophysical properties including AIE-behavior are systematically investigated not only by experimental methods but also by DFT computation. Thereby, we show that the two compounds possess high thermal and electrochemical stability with a remarkable AIE-behavior. X-ray crystal analyses aided by DFT calculations provide insights in the origin of the luminescent properties and AIE features. Ultimately, two non-doped OLEDs (Device A and Device B) were fabricated by using PDPBCE and BDPBCE as light-emitting layer, respectively. Device A showed yellowish-green light with a turn-on voltage of 3.8 V, a maximum brightness of 59130 cd m−2 and a maximum current efficiency of 6.43 cd A−1. Device B exhibited greenish-yellow light with a turn-on voltage of 3.0 V, a maximum brightness of 67,500 cd m−2 and a maximum current efficiency of 11.2 cd A−1.  相似文献   

15.
A bright high-efficiency host-free deep-blue organic light-emitting diode (OLED) is demonstrated. Without the aid of any carrier regulating layer, the deep-blue OLED shows a power efficiency of 1.7 lm W−1 with CIE coordinates of (0.143, 0.098) at 1000 cd m−2. The respective power efficiency is increased from 1.7 to 2.1 and 2.2 lm W−1 as a single- and double-carrier regulating layers were incorporated. The respective peak luminance also increases from 5250 to 7620 and 9130 cd m−2, an increment of 45% and 74%. The marked brightness improvement may be attributed to the incorporated carrier regulating layers that effectively lead carriers to recombine in a wider zone. Moreover, the blue emission can be hypsochromic shifted by varying the incorporation position of the carrier regulating layer and the emissive layer thickness.  相似文献   

16.
Two new host materials, CzDPPy and tCzDPPy, were designed and synthesized through the Ullmann-coupling reaction between carbazole/3,6-di-tert-butyl-carbazole and 2,6-bis(2-bromophenyl)pyridine. Their single-crystal structure, thermal, electrochemical, opt-electronic and bipolar carrier-transporting properties were fully investigated. Due to the steric hindrance of carbazole at the ortho positions of diphenylpyridine, both CzDPPy and tCzDPPy adapted highly twisted molecular conformation, which could effectively minimize their π conjugation and endow them the high triplet energies of 2.67 and 2.64 eV, respectively. Organic light-emitting devices (OLEDs) were fabricated by using CzDPPy and tCzDPPy as the host materials and 1,2-bis(carbazol-9-yl)-4,5-dicyanobenzene (2CzPN) as the sky-blue TADF emitter. The peak current efficiency of 34.8 cd A−1, power efficiency of 33.1 lm W−1 and external quantum efficiency of 16.0% were realized for the CzDPPy-based TADF OLED, along with the satisfactory CIE coordinate of (0.18, 0.34) at 100 cd m−2.  相似文献   

17.
Highly efficient and stable blue quantum-dot light-emitting diodes (QD-LEDs) have been realized by using poly (9,9-bis(N-(2′-ethylhexyl)-carbazole-3-yl)-2,7-fluorene) (PFCz) as hole-transporting layers (HTLs). Due to the carbazole units as substituents at the 9-position of polyfluorene, PFCz shows higher hole mobility and better electrochemical stability than poly (N-vinlycarbazole) (PVK). As a result, the maximum current efficiency (CE) and external quantum efficiency (EQE) of the blue QD-LEDs increased from 4.32 cd A−1 to 7.9% for PVK HTL to 7.38 cd A−1 and 12.61% for PFCz HTL, respectively. Furthermore, the PFCz-based blue QD-LED exhibited lower turn-on voltage and longer device lifetime than the PVK-based device. The improvement performance of blue QD-LED should be attributed to the conjugated fluorene backbone and the substituents of the carbazole active sites, thus enhancing hole mobility and electrochemical stability. This result demonstrates that polyfluorenes with pendent carbazole groups is a promising hole-transporting materials for improving performance of blue QD-LEDs.  相似文献   

18.
The electronic parameters and photovoltaic properties of the Au/methylene blue/n-Si diodes were investigated by current-voltage and capacitance-conductance-frequency techniques. The diode exhibits a non-ideal behavior due the series resistance, organic layer and oxide layer. The barrier height (1.04 eV) of the Au/methylene blue/n-Si is higher than that of Au/n-Si Schottky diode (0.83 eV) due to an excess barrier formed by organic layer. The interface state density of the diode was determined using a conductance technique and was found to be 3.25 × 1012 eV−1 cm−2. The diode shows a photovoltaic behavior with a maximum open circuit voltage Voc of 0.23 V and short-circuit current Isc of 20.8 μA under 100 mW/cm2. It is evaluated that Au/methylene blue/n-Si is an organic-on-inorganic photodiode with the obtained electronic parameters and methylene blue organic dye controls the interface and electrical properties of conventional metal/n-type silicon junction.  相似文献   

19.
A series of new blue materials based on highly fluorescent di(aryl)anthracene and electron-transporting phenanthroimidazole functional cores: 2-(4-(anthracen-9-yl)phenyl)-1-phenyl-1H-phenanthro[9,10-d]imidazole (ACPI), 2-(4-(10-(naphthalen-1-yl)anthracen-9-yl)phenyl)-1-p-henyl-1H-phenanthro[9,10-d]imidazole (1-NaCPI), 2-(4-(10-(naphthalen-2-yl)anthracen-9-yl)phenyl)-1-phenyl-1H-phenanthro[9,10-d]imidazole (2-NaCPI) were designed and synthesized. These materials exhibit good film-forming and thermal properties as well as strong blue emission in the solid state. To explore the electroluminescence properties of these materials, three layer, two layer and single layer organic light-emitting devices were fabricated. With respect to the three layer device 4 using ACPI as the emitting layer, its maximum current efficiency reaches 4.36 cd A−1 with Commission Internationale del’Eclairage (CIE) coordinates of (0.156, 0.155). In the single layer device 10 based on ACPI, maximum current efficiency reaches 1.59 cd A−1 with Commission Internationale del’Eclairage (CIE) coordinates of (0.169, 0.177). Interestingly, both device 4 and 10 has low turn on voltage and negligible efficiency roll off at high current densities.  相似文献   

20.
Three new bipolar molecules composed of carbazole, triarylamine, and bipyridine were synthesized and utilized as host materials in multi-color phosphorescent OLEDs (PhOLEDs). These carbazole-based materials comprise a hole-transport triarylamine at C3 and an electron-transport 2,4′- or 4,4′-bipyridine at N9. The different bipyridine isomers and linking topology of the bipyridine with respect to carbazole N9 not only allows fine-tuning of physical properties but also imparts conformational change which subsequently affects molecular packing and carrier transport properties in the solid state. PhOLEDs were fabricated using green [(ppy)2Ir(acac)], yellow [(bt)2Ir(acac)], and red [(mpq)2Ir(acac)] as doped emitters, which showed low driving voltage, high external quantum efficiency (EQE), and extremely low efficiency roll-off. Among these new bipolar materials, the 2Cz-44Bpy-hosted device doping with 10% (ppy)2Ir(acac) as green emitting layer showed a high EQE of 22% (79.8 cd A−1) and power efficiency (PE) of 102.5 lm W−1 at a practical brightness of 100 cd m−2. In addition, the device showed limited efficiency roll-off (21.6% EQE) and low driving voltage (2.8 V) at a practical brightness of 1000 cd m−2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号