首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lead-free Na0.5Bi0.5TiO3 -BaTiO3 ceramics have been prepared in the whole range of concentrations and studied at room-temperature by means of X-ray, Raman scattering and infrared techniques. X-ray measurements revealed rhombohedral, rhombohedral-tetragonal boundaries and tetragonal modifacations depending on the contents of BaTiO3. The distinct changes of the Raman and infrared spectra with increasing of BaTiO3 content, which were correlated with X-ray results, were observed. The broad phonon spectra indicated the disorder in the A site of Na0.5Bi0.5TiO3 -BaTiO3 system.  相似文献   

2.
Magnetic-field-assisted electrophoretic deposition method has been employed for synthesizing a(b)-axis-oriented Bi5FeTi3O15 ceramics, and the effects of grain orientation and microstructure on the polarization and piezoelectric properties have been investigated. Grain-oriented Bi5FeTi3O15 ceramics with a high relative sintered density of 98% is shown to exhibit enhanced polarization and piezoelectric properties with a remanent polarization (P r) of 19 μC/cm2 and a piezoelectric strain constant (d 33) of 23 pm/V, which are much superior to those of randomly-oriented ceramics (P r of 7 μC/cm2 and d 33 of 5 pm/V).  相似文献   

3.
BaTiO3 (BT) based X9R ceramics with high permittivity about 1700 were prepared by doping and pre-sintering technique. Pure Bi0.5Na0.5TiO3 (BNT) dopant was synthesized by the conventional solid state reaction first. Using this new approach, high performance BTBNT (BT doped with BNT) materials, owning high Curie temperature (139 °C), flat ferroelectric transition region and large permittivity at room temperature, were obtained. The effects of several dopants on dielectric properties of BTBNT ceramics were measured by the LCR meter. The suppression effect for the peaks in the dielectric constant at Curie temperature of these dopants have been ranked as follows: BiNbO4 > CaZrO3 > Nb2O5 > BNT.  相似文献   

4.
In this letter, MnO2-doped (Bi0.5Na0.5)0.94Ba0.06TiO3 (BNBT-6) lead-free piezoelectric ceramics were synthesized by solid state reaction, and the microstructure and electrical properties of the ceramics were investigated. X-ray diffraction (XRD) reveals that all specimens take on single perovskite type structure, and the diffraction peaks shift to a large angle as the MnO2 addition increases. Scanning electron microscopy shows that the grain sizes increases, and then decreases with increasing the MnO2 content. The experiment results indicate that the electrical properties of ceramics are significantly influenced by the MnO2 content, and the ceramics with homogeneous microstructure and excellent electrical properties are obtained with addition of 0.3 wt% MnO2 and sintered at 1160°C. The piezoelectric constant (d33), the electromechanical coupling factor (k p ), the dissipation factor (tan δ) and the dielectric constant (ɛ r ) reach 160 pC/N, 0.29, 0.026 and 879, respectively. These excellent properties indicate that the MnO2-doped BNBT-6 ceramics can be used for actuators.  相似文献   

5.
Niobium-doped strontium titanate synthesized via conventional solid-state reaction has been studied. Influence of niobium content on the lattice parameters and electrical conductivity has been reported. Various reduction conditions have been investigated. For samples reduced in hydrogen at 1400°C, a transition from thermally activated to metallic behavior has been observed. Maximum electrical conductivity (ca. 55 Scm−1 at 650°C) has been observed for the SrTi0.98Nb0.02O3-δ sample. The relation of electrical conductivity with the porosity of the samples has been shown.  相似文献   

6.
In this article, (Na0.5Bi0.5)1-xBaxTiO3 lead-free piezoelectric ceramics were prepared by solid-state reaction. The influence of Ba contents on phase structures, compositional distribution and electrical properties of (Na0.5Bi0.5)1-xBaxTiO3 ceramics were systematically investigated to further understand the nature of phase transition. It was found that the phase structure of (Na0.5Bi0.5)1-xBaxTiO3 transforms from rhombohedral to tetragonal symmetry at x = 0.06 ~ 0.07 and Ba2+ segregation forms the coexistence of Ba-rich tetragonal and Ba-deficient rhombohedral phases close to MPB. The electrical properties of prepared samples regularly changed with Ba content, which is closely related to the distribution of rhombohedral and tetragonal phases. The prepared sample near MPB exhibited the largest dielectric constant and the excellent piezoelectric properties (the maximal measuring field reached 78 kV/cm and the piezoelectric constant d 33 = 151pC/N).  相似文献   

7.
0.62Bi(Mg1/2Ti1/2)O3-0.38PbTiO3-xwt%Bi2O3 (BMT-0.38PT-xBi2O3) ceramics were prepared by conventional powder-processing method. It indicated that the morphotropic phase boundary (MPB) region located in 0.0?≤?x?≤?0.3. For x?=?0.3, it exhibited good piezoelectric properties, d33 ~245pC/N and kp ~40 %. With the increase of Bi2O3 content, the Curie temperature (Tc) was found to increase, and the dielectric loss was found to decrease above 200 °C compared with BMT-0.38PT sample. Finally, it can be found that depolarization temperature was around 350 °C by thermal depoling method.  相似文献   

8.
BiFeO3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (BF-PMN-PT) ternary ceramics with pure perovskite phase were prepared through a two-step solid reaction method. Based on structural analysis, the ternary phase diagram of BF-PMN-PT solid solution at room temperature has been established. The Curie temperature TC, remnant polarization Pr and piezoelectric constant d33 vary in the range of 138 to 225 °C, 15.12 to 23.65 μC/cm2 and 129 to 276 pC/N, respectively. The coercive field Ec increases gradually from 5.77 to 29.56 kV/cm upon PT content increasing. The magnetic study suggests that the magnetism turns from diamagnetism for PMN-PT to paramagnetism for BF-PMN-PT by adding BiFeO3 into PMN-PT and adding more content of BF does not change the paramagnetism further.  相似文献   

9.
Bi9Fe5Ti3O27 is an eight-layered material belonging to the family of bismuth layered structured ferroelectromagnets. The polycrystalline sample of this compound was prepared by a standard solid-state reaction technique. The formation of the compound in an orthorhombic crystal structure was confirmed by an X-ray diffraction (XRD) technique (lattice parameters: a?=?5.5045[27] Å, b?=?5.6104[27] Å, c?=?76.3727[27] Å). Detailed studies of surface morphology of the compound using scanning electron microscopy (SEM) exhibit that the compound has domains of plate shaped grains. Studies of dielectric and electric properties in a wide temperature range (30–500 °C) at different frequencies (100 Hz–1 MHz) exhibit an anomaly at 291?±?2 °C, which is related to ferroelectric to paraelectric phase transition as suggested by hysteresis loop at room temperature. The values and nature of temperature variation of dc conductivity exhibit the NTCR behavior of the compound.  相似文献   

10.
The effect of manganese doping on the dielectric properties of CaCu3Ti4-xMnxO12 (x?=?0, 0.02, 0.04) were investigated over a broad temperature range (93–723 K) in the frequency range from 100 Hz to 10 MHz. Two dielectric relaxations and two dielectric anomalies were observed. The low-temperature relaxation appearing in the temperature range below 200 K is the characteristic relaxation for CaCu3Ti4O12. This relaxation was attributed to the polaron relaxation due to electron hopping between Ti3+ and Ti4+ states. Due to the negative factors of notable decreases in the Ti3+/Ti4+ and Cu3+/Cu2+ ratios and the concentration of oxygen vacancies as revealed by X-ray photoemission spectroscopy, Mn-doping was found to gradually destroy rather than move this relaxation to a higher temperature. The high-temperature relaxation occurring around room temperature was found to be a Maxwell-Wagner relaxation caused by grain boundaries. Our results confirm that the colossal dielectric behavior in the tested samples results from both polaron and Maxwell-Wagner relaxations, but is predominated by the latter relaxation. The low-temperature anomaly behaves as a phase-transition-like behavior. It was argued to be created by oxygen vacancies transition from static disorder to dynamic disorder. The high-temperature anomaly is an artificial effect caused by negative capacitance.  相似文献   

11.
The stoichiometric CaCu3Ti4O12 pellets were prepared by the solid state synthesis. X-ray diffraction data revealed the tenorite CuO and cuprite Cu2O secondary phases on the unpolished CaCu3Ti4O12 samples regardless of the heating rates. Also, the dielectric constant marked the highest for the CaCu3Ti4O12 sample sintered at the lowest heating rate (1°C/min), which was explained by the increased grain conductivity due to the cation reactions. On the other hand, Cu2O phase was found only on the unpolished CaCu3Ti4O12 sample sintered over 1100°C and those are considered as the remains reduced from the CuO phase. The higher sintering temperature showed the increased dielectric constant and the loss tangent of the CaCu3Ti4O12 samples, and this result could be interpreted by the impedance measurement data. The relationship between the processing condition and the dielectric properties was discussed in terms of the cation non-stoichiometry and the defect chemistry in CaCu3Ti4O12.  相似文献   

12.
(Ca1-xFex)3Co4O9 polycrystalline samples (x?=?0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.1 and 0.2) have been prepared by solid state reaction and sintered by spark plasma sintering. Their thermoelectric properties have been studied between 323 and 1000 K. The substitution limit is low (< 3%). For higher iron contents, formation of Co3O4, Ca2FeCoO5 and a calcium ferrite compound occurs. Concerning electrical conductivity and power factor, an optimum value exists for x?=?0.03 substitution. This optimum power factor is circa 10% higher than the one of the unsubstituted sample. The optimum thermal diffusivity is measured for the sample with x?=?0.02 and is circa 9% lower than the one of the unsubstituted sample. Therefore, the dimensionless figure of merit ZT is finally increased by 14% for the (Ca0.98Fe0.02)3Co4O9 and (Ca0.97Fe0.03)3Co4O9 compositions.  相似文献   

13.
In this study, phase evolution, microstructure, and microwave dielectric properties of (Ba0.98Na0.02)(Mg0.48M3+0.02W0.5)O3 (M3+?=?Al, Ga, Sc, In, Yb, Y, Dy, Gd, and Sm) ceramics sintered at 1700 °C for 1 h were investigated. All the compounds exhibited an ordered cubic perovskite structure. Regardless of the ionic radius of the doped M3+ ions, BaWO4 was detected as the secondary phase in all the compounds. The field emission scanning electron microscopy (FE-SEM) images revealed a dense microstructure in all the compounds, except in the Al-doped compound, which exhibited an insufficient grain growth. The large and irregularly shaped grains indicated that the liquid phase sintering occurred. Splitting of the A1g(O) mode was observed in the Raman spectra of large M3+ ion-doped compounds. Splitting of the F2g modes did not occur and the bands were sharp, indicating that the cubic symmetry was retained. As the ionic radius of the doped M3+ ions increased, the dielectric constant (εr) increased slightly. The compounds doped with M3+?=?Sc, In, Yb, and Y exhibited a very high quality factor (Q?×?f0) in the range of 250,000 ~ 280,000 GHz. In the case of the compounds doped with M3+?=?Al, Ga, Sc, In, Yb, Y, and Dy, the value of the temperature coefficient of resonant frequency (τf) was in the range of ?24 ~ ?19 ppm/°C, while the Gd and Sm-doped compounds exhibited positive values of 2.8 and 31.2 ppm/°C, respectively. The dielectric constant, quality factor, and temperature coefficient of resonant frequency of the In-doped compound, i.e., (Ba0.98Na0.02)(Mg0.48In0.02W0.5)O3, were 18.7, 286,557 GHz, and???24.4 ppm/°C, respectively.  相似文献   

14.
Sr2TiO4 ceramics were synthesized via the conventional solid-state reaction process, and the effects of post-annealing treatment in air on the microwave dielectric properties and defect behavior of title compound were investigated systematically. The Q?×?f values could be effectively improved from 107,000 GHz to 120,300 GHz for the specimens treated at 1450 °C for 16 h. The thermally stimulated depolarization currents (TSDC) revealed two kinds of defect dipoles [\( \left({\mathrm{Ti}}_{\mathrm{Ti}}^{\hbox{'}}-{V}_{\mathrm{O}}^{\bullet \bullet}\right) \) and \( \left({V}_{\mathrm{Sr}}^{"}-{V}_{\mathrm{O}}^{\bullet \bullet}\right) \)] and oxygen vacancies \( \left({V}_{\mathrm{O}}^{\bullet \bullet}\right) \) were considered the main defects in Sr2TiO4. Under a post-annealing treatment in air, the concentrations of such defects in the ceramics decreased. Meanwhile, the impedance spectrum revealed the activation energy of the grain boundaries increased. These evidences could account for the improvement of Q?×?f values. Accompanied with a high εr of 40.4 and a large τf of 126 ppm/°C, the enhanced high-Q Sr2TiO4 ceramics can be good candidates for applications in wireless passive temperature sensing.  相似文献   

15.
The compositions in the system (Ba1−x Sr x )(Ti0.5Zr0.5)O3 with different Sr (x) content, were synthesized through solid oxide reaction route. The phase formation behaviors in the system were investigated by XRD. The room temperature dielectric properties of the compositions were investigated in the frequency range 10 Hz to 13 MHz. The solid solution system Ba1−x Sr x Ti0.5Zr0.5O3 remains as cubic perovskite up to x < 0.6 and transforms into the tetragonal structure above x > 0.6. Composition with x = 0.6 contains a mixture of cubic and tetragonal phases with broadened diffraction pattern. It is observed that the increasing of Sr substitution results in the decreasing of bulk density, average grain size and dielectric constants etc. in the composition system. The AC dielectric conductivity of the ceramics also decreases with the increase in Sr-substitution due to decrease in loss as well as grain size with that substitution.  相似文献   

16.
The (1-x)Ba(Zr0.25Ti0.75)O3-xSr(Fe0.5Nb0.5)O3 or (1-x)BZT-xSFN ceramics have been fabricated via a solid-state reaction technique. All ceramics exhibit a pure phase perovskite with cubic symmetry. The addition of a small amount of SFN (x?=?0.1) produces an obvious change in dielectric behavior. Very high dielectric constants (εr?>?164,000 at 1 kHz and temperature?>?150°C) are observed and the value is obviously higher than dielectric constants for Ba(Zr0.25Ti0.75)O3 and Sr(Fe0.5Nb0.5)O3 ceramics. The ferroelectric measurement data suggests that the unmodified sample exhibited a ferroelectric behavior. However, a transformation from a ferroelectric to a relaxor-like behavior is noted with increasing x concentration. Impedance Spectroscopy (IS) analysis indicates that the presence of excellent dielectric constants is due to the heterogeneous conduction in the ceramics after adding SFN, which can be explained in terms of the Maxwell-Wagner polarization mechanism.  相似文献   

17.
The sintering behavior of Ni electrode alloyed with Cu and the interfacial structure between Ni/Cu to BaTiO3 (BT) have been investigated. The quantitative properties, which include thermal shrinkage, thermal expansion, wetting behaviors of Ni/Cu alloys on BT sheet, and composition distribution were measured by several thermal analysis techniques (TGA/DTA/TMA) and microstructural techniques (SEM/TEM/ HRTEM) with energy-dispersive spectroscopy (EDS). The shrinkage of the Ni/Cu/ BaTiO3 composite tested in 5%H2/N2 atmosphere showed strong influence by the addition of Cu, and retarded slightly due to the addition of the BT particulates. The Cu alloyed with Ni improves the continuity of the electrode and does not trigger mutual reaction between Ni and BT.  相似文献   

18.
Effects of Ca substitution for Ba on the phase composition, microstructure, sintering behavior and microwave dielectric properties of nominal ceramics Ba1-xCaxV2O6 (0.2?≤?x?≤?0.5) were investigated. The XRD, Raman and SEM results revealed that BaV2O6 and CaV2O6 composite ceramics were formed. Nominal ceramics Ba1-xCaxV2O6 could be well densified at about 550 °C via a solid-state reaction method. The microwave dielectric properties exhibited strong dependence on the composition and microstructure. Typically, the Ba0.7Ca0.3V2O6 ceramics sintered at 550 °C exhibited excellent microwave dielectric properties: εr?=?10.9, Qxf?=?17,100 GHz (at 9.9 GHz), and τf?=?4 ppm/°C. Meanwhile, Ba0.7Ca0.3V2O6 ceramics also showed good chemical compatibility with Al electrode. These results indicated that the Ba0.7Ca0.3V2O6 ceramics could be a promising candidate for the ULTCC technology.  相似文献   

19.
The ternary lead-free piezoelectric ceramics system of (1 – x) [0.88Na0.5Bi0.5TiO3-0.12K0.5Bi0.5TiO3] – xNaNbO3(x = 0, 0.02, 0.04, 0.06, 0.08, 0.10) were synthesized by conventional solid state reaction method. The crystal structure, dielectric, piezoelectric properties and P-E hysteresis loops were investigated. The crystalline structure of all compositions is mono-perovskite phase ascertained by XRD, and the lattice constant was calculated from the XRD data. Temperature dependence of dielectric constant r and dissipation factor tan measurement revealed that all compositions experienced two phase transitions: from ferroelectric to anti-ferroelectric and from anti-ferroelectric to paraelectric, and these two phase transitions have relaxor characteristics. Both transition temperatures Td and Tm are lowered due to introduction of NaNbO3. P-E hysteresis loops show that 0.88Na0.5Bi0.5TiO3-0.12K0.5Bi0.5TiO3 ceramics has the maximum Pr and Ec corresponding to the maximum values of electromechanical coupling factor Kp and piezoelectric constant d33. The piezoelectric constant d33 and electromechanical coupling factor Kp decrease a little, while the dielectric constant 33T/0 improves much more when the concentration of NaNbO3 is 8 mol%.  相似文献   

20.
The temperature and pressure characteristics of a noncentrosymmetric crystal modification of NaNbO3 were studied by Raman spectroscopy. A transition towards the bulk-like structure of NaNbO3 occurs in the temperature range from 280 to 360 °C. High-pressure Raman spectroscopy revealed successive pressure-induced phase transitions at around 2, 6.5 and 10 GPa. Raman scattering profiles recorded above 7 GPa correspond to those reported for the bulk. The temperature-induced spectral changes were completely reversible between −150 and 450 °C. Those induced by pressure were almost reversible from ambient pressure up to 15.9 GPa. Piezoresponse force microscopy demonstrated the occurrence of piezoelectric activity for submicron NaNbO3 crystals with particle size ranging from 200 to 400 nm. The noncentrosymmetric crystallographic structure plays a critical role for the enhancement of piezoelectricity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号