首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Tserng  H.Q. Saunier  P. 《Electronics letters》1985,21(21):950-951
A four-way monolithic GaAs travelling-wave power divider/combiner has been designed, fabricated and evaluated. With a design centre frequency of 20 GHz, a bandwidth of from 10 GHz to 30 GHz has been measured. The insertion loss per dividing or combining action is less than 0.5 dB, with isolation between ports no worse than 20 dB. The input/output VSWRs are better than 2:1 across the same band. This divider/combiner can readily be used with monolithic GaAs power FET amplifiers to produce a several-fold increase in output powers over the 10 to 30 GHz frequency range.  相似文献   

2.
Jeong  J. Kim  S. Choi  W. Noh  H. Lee  K. Seo  K.-S. Kwon  Y. 《Electronics letters》2005,41(18):1005-1006
A W-band divide-by-3 frequency divider with wide bandwidth and low power dissipation is presented using harmonic injection-locking technique. A cascode FET is employed for a self-oscillating second-harmonic mixer which is injection-locked by third-harmonic input to obtain the division order of three. The fabricated frequency divider using 0.1 /spl mu/m GaAs metamorphic HEMT technology shows superior performance such as large bandwidth of 6.1 GHz around 83.1 GHz (7.3%) under small DC power consumption of 12 mW.  相似文献   

3.
The authors describe the circuit design and the process utilized to fabricate a 1.2 GHz 380-mW divide-by-20/21/22/23/24 GaAs circuit aimed at frequency synthesizer applications. The circuit consists of a 5/6 prescaler, a divide-by-4 circuit, and a four-channel multiplexer. The circuit has been implemented with BFL gates fabricated with 0.7-/spl mu/m planar self-aligned normally-on MESFETs. Further improvement can be expected by utilizing DCFL gates instead. A maximum frequency of 2.5 GHz and an internal active power of 50 mW have been simulated. Consequently the normally-off (N-OFF) GaAs circuit would exhibit a speed by power product four times lower than that of equivalent Si ECL dividers based in bipolar processes being developed today.  相似文献   

4.
The design and performance of a dynamic frequency divider was presented. This digital IC demonstrates the ability of the authors' AlGaAs/GaAs/AlGaAs quantum-well FETs with gate lengths of 0.2 μm. Stable operation was achieved in the frequency range from 18 GHz up to 34 GHz with a power consumption of 250 mW. To the authors' knowledge, this is the best result ever reported for HEMT circuits, and is similar to the frequency limit achieved by use of AlGaAs/GaAs HBTs  相似文献   

5.
High frequency characterisation of three-quantum well GaInNAs/GaAs lasers operating at 1.35 /spl mu/m is reported. A relaxation frequency as high as 7.4 GHz and a 9.7 GHz small-signal bandwidth are demonstrated, indicating the potential for high bit rate (10 Gbit/s) direct modulation of these dilute nitrides on GaAs devices.  相似文献   

6.
This paper describes the design and performance of a low noise multicarrier receiver for a 30/20 GHz single-conversion satellite transponder. To develop a low noise receiver the following areas were examined: 1) analysis of spurious signals, 2) selection of devices most suitable for use on board the satellite, and 3) level diagram tradeoff studies. The receiver consists of a 30 GHz low noise GaAs FET amplifier, a 30/20 GHz GaAs Schottky barrier diode mixer, a dielectric resonated local oscillator, a 20 GHz high gain GaAs FET amplifier, and a 20 GHz high power (0.5 W) GaAs FET amplifier. The receiver has an 8 dB noise figure and a 48 dB gain in the frequency range from 28.395 GHz to 29.015 GHz (620 MHz frequency bandwidth).  相似文献   

7.
A Ku-band monolithic HBT power amplifier was developed using a metal-organic chemical vapor deposition (MOCVD)-grown AlGaAs/GaAs heterojunction bipolar transistor (HBT) operating in common-emitter mode. At a 7.5 V collector bias, the amplifier produced 0.5 W CW output power with 5.0 dB gain and 42% power-added efficiency in the 15-16 GHz band. When operated at a single frequency (15 GHz), 0.66 W CW output power and 5.2 dB of gain were achieved with 43% PAE  相似文献   

8.
A 6 GHz voltage controlled oscillator (VCO) optimized for power and noise performance was designed and characterized. This VCO was designed with the negative-resistance (Neg-R) method, utilizing an InGaP/GaAs hetero-junction bipolar transistor in the negative-resistance block. A proper output matching network and a high Q stripe line resonator were used to enhance output power and depress phase noise. Measured central frequency of the VCO was 6.008 GHz. The tuning range was more than 200 MHz. At the central frequency, an output power of 9.8 dBm and phase noise of-122.33 dBc/Hz at 1 MHz offset were achieved, the calculated RF to DC efficiency was about 14%, and the figure of merit was -179.2 dBc/Hz.  相似文献   

9.
An In0.3Al0.7As/In0.3Ga0.7 As metamorphic power high electron mobility transistor (HEMT) grown on GaAs has been developed. This structure with 30% indium content presents several advantages over P-HEMT on GaAs and LM-HEMT on InP. A 0.15-μm gate length device with a single δ doping exhibits a state-of-the-art current gain cut-off frequency Ft value of 125 GHz at Vds=1.5 V, an extrinsic transconductance of 650 mS/mm and a current density of 750 mA/mm associated to a high breakdown voltage of -13 V, power measurements performed at 60 GHz demonstrate a maximum output power of 240 mW/mm with 6.4-dB power gain and a power added efficiency (PAE) of 25%. These are the first power results ever reported for any metamorphic HEMT  相似文献   

10.
Pulsed operation of epitaxial GaAs transferred-electron oscillators at a bias voltage of ten times the threshold voltage is described. The operating frequency, 14.1 GHz, was close to the transit-time frequency of 13 GHz. A maximum power output of 800 mW at 10% efficiency was obtained at 1% duty cycle. The power output and efficiency decreased with increasing duty cycle, and this decrease is attributed to the decrease in the peak/valley ratio of GaAs with increasing lattice temperature.  相似文献   

11.
A fully integrated K-band balanced voltage controlled oscillator (VCO) is presented. The VCO is realized using a commercially available InGaP/GaAs heterojunction bipolar transistor (HBT) technology with an f/sub T/ of 60 GHz and an f/sub MAX/ of 110 GHz. To generate negative resistance at mm-wave frequencies, common base inductive feedback topology is used. The VCO provides an oscillation frequency from 21.90 GHz to 22.33 GHz. The frequency tuning range is about 430 MHz. The peak output power is -0.3 dBm. The phase noise is -108.2 dBc/Hz at 1 MHz offset at an operating frequency of 22.33 GHz. The chip area is 0.84/spl times/1.00 mm/sup 2/.  相似文献   

12.
A MMIC 77-GHz two-stage power amplifier (PA) is reported in this letter. This MMIC chip demonstrated a measured small signal gain of over 10 dB from 75 GHz to 80 GHz with 18.5-dBm output power at 1 dB compression. The maximum small signal gain is above 12 dB from 77 to 78 GHz. The saturated output power is better than 21.5 dBm and the maximum power added efficiency is 10% between 75 GHz and 78 GHz. This chip is fabricated using 0.1-/spl mu/m AlGaAs/InGaAs/GaAs PHEMT MMIC process on 4-mil GaAs substrate. The output power performance is the highest among the reported 4-mil MMIC GaAs HEMT PAs at this frequency and therefore it is suitable for the 77-GHz automotive radar systems and related transmitter applications in W-band.  相似文献   

13.
A high-speed divide-by-four static frequency divider is fabricated using n+ -Ge gate AlGaAs/GaAs heterostructure MISFET's. The divider circuit consists of two master-slave T-type flip-flops (T-FF's) and an output buffer based on source-coupled FET logic (SCFL). A maximum toggle frequency of 11.3 GHz with a power dissipation of 219 mW per T-F/F is obtained at 300 K using 1.0-µm gate FET's.  相似文献   

14.
As an alternative to AlGaAs/GaAs heterojunction bipolar transistors (HBTs) for microwave applications, InGaP/GaAs HBTs with carbon-doped base layers grown by metal organic molecular beam epitaxy (MOMBE) with excellent DC, RF, and microwave performance are demonstrated. As previously reported, with a 700-Å-thick base layer (135-Ω/sq sheet resistance), a DC current gain of 25, and cutoff frequency and maximum frequency of oscillation above 70 GHz were measured for a 2-μm×5-μm emitter area device. A device with 12 cells, each consisting of a 2-μm×15-μm emitter area device for a total emitter area of 360 μm2, was power tested at 4 GHz under continuous-wave (CW) bias condition. The device delivered 0.6-W output power with 13-dB linear gain and a power-added efficiency of 50%  相似文献   

15.
A 6 GHz voltage controlled oscillator (VCO) optimized for power and noise performance was designed and characterized. This VCO was designed with the negative-resistance (Neg-R) method, utilizing an InGaP/GaAs hetero-junction bipolar transistor in the negative-resistance block. A proper output matching network and a high Q stripe line resonator were used to enhance output power and depress phase noise. Measured central frequency of the VCO was 6.008 GHz. The tuning range was more than 200 MHz. At the central frequency, an output power of 9.8 dBm and phase noise of -122.33 dBc/Hz at 1 MHz offset were achieved, the calculated RF to DC efficiency was about 14%, and the figure of merit was -179.2 dBc/Hz.  相似文献   

16.
利用各向异性的湿法刻蚀和侧墙隔离技术实现了发射极金属和基极金属的自对准,采用该自对准技术成功地研制出了自对准结构的AlGaAs/GaAs异质结双极晶体管,器件直流电流增益大于20,电流增益截止频率fT大于30GHz,最高振荡频率fmax大于50GHz,连续波功率测量表明:在1dB增益压缩时,单指HBT可以提供100mW输出功率,对应的功率密度为6.67W/mm,功率饱和时最大输出功率112mW,对应功率密度为7.48W/mm,功率附加效率为67%.  相似文献   

17.
A uniplanar GaAs monolithic microwave integrated circuit /spl times/4 subharmonic mixer (SHM) has been fabricated for 60-GHz-band applications using an antiparallel diode pair in finite ground coplanar (FGC) waveguide technology. This mixer is designed to operate at an RF of 58.5-60.5 GHz, an IF of 1.5-2.5 GHz, and an LO frequency of 14-14.5 GHz. FGC transmission-line structures used in the mixer implementation were fully characterized using full-wave electromagnetic simulations and on-wafer measurements. Of several mixer configurations tested, the best results show a maximum conversion loss of 13.2 dB over the specified frequency range with a minimum local-oscillator power of 3 dBm. The minimum upper sideband conversion loss is 11.3 dB at an RF of 58.5 GHz and an IF of 2.5 GHz. This represents excellent performance for a 4/spl times/ SHM operating at 60 GHz.  相似文献   

18.
A W-band monolithic frequency doubler was designed and fabricated using a vertical GaAs varactor diode that has an n/sup +/ buried layer and uses a mesa isolation process. An output power of 30 mW was obtained from this chip at 93 GHz with a conversation efficiency of 12%. This is believed to be the first reported W-band monolithic varactor diode frequency doubler.<>  相似文献   

19.
高功率密度自对准结构AlGaAs/GaAs异质结双极晶体管   总被引:6,自引:5,他引:1  
利用各向异性的湿法刻蚀和侧墙隔离技术实现了发射极金属和基极金属的自对准 ,采用该自对准技术成功地研制出了自对准结构的 Al Ga As/ Ga As异质结双极晶体管 ,器件直流电流增益大于 2 0 ,电流增益截止频率 f T 大于30 GHz,最高振荡频率 fmax大于 5 0 GHz,连续波功率测量表明 :在 1d B增益压缩时 ,单指 HBT可以提供 10 0 m W输出功率 ,对应的功率密度为 6 .6 7W/ m m,功率饱和时最大输出功率 112 m W,对应功率密度为 7.48W/ m m,功率附加效率为 6 7%  相似文献   

20.
采用标准的湿法刻蚀工艺研制出了S波段工作的非自对准AlGaAs/GaAs异质结双极晶体管.对于总面积为8×2μm×10μm的HBT器件,测得其直流电流增益大于10,电流增益截止频率fT大于20GHz,最高振荡频率fmax大于30GHz.连续波功率输出为0.3W,峰值功率附加效率41%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号