首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ferritic spheroidal graphite irons with nodularity from 72% to 96% were prepared. The relationship between the nodularity and the mechanical properties of the ferritic spheroidal graphite iron was investigated. The effect of nodularity on the mechanical properties and tensile fracture of the cast iron were studied. Results showed that the tensile strength Rm, yield strength R_(p0.2), elongation to failure A_5, and impact energy KV_2 of the cast iron had a good linear relationship with its nodularity. Nodularity and annealing treatment would obviously affect the fracture characteristics of ferritic spheroidal graphite iron. The annealed ferritic spheroidal graphite iron with 93% nodularity showed a completely ductile rupture. With the decrease of nodularity from 93% to 72%, the cleavage fracture area ratio increased gradually from 0% to 8.3%. Compared with as-cast ferritic spheroidal graphite iron, annealing treatment reduced the cleavage fracture area of the ferritic spheroidal graphite iron.  相似文献   

2.
The thermal conductivity of Compacted Graphite Iron (CGI) and spheroidal graphite iron (SGI) was established in the temperature range from room temperature up to 500 °C using the experimental thermal diffusivity, density and specific heat values. The influence of nodularity, graphite amount, silicon content and temperature on the thermal conductivity of fully ferritic high-silicon cast irons was investigated. It was found that the CGI materials showed higher thermal conductivity than the SGI materials. The thermal conductivity tended to increase with increasing temperature until it reached a maximum followed by a subsequent decrease as temperature was increased up to 500 °C. Conventional models were applied to estimate thermal conductivity and the predictive accuracy of each model was evaluated. The thermal conductivity could be estimated by the Helsing model. The Maxwell model, Bruggeman model and Hashin–Shtrikman model were also in fair agreement using the thermal conductivity value of graphite parallel to the basal planes in graphite.  相似文献   

3.
Abstract

This study aims to clarify the influence of additive elements of Ni and Mn on tensile and impact properties of three kinds of spheroidal graphite cast irons (SG irons), which are as cast, annealed and austempered samples. Spheroidal graphite cast irons with Ni (0–4˙5 mass-%) and Mn (0–0˙5 mass-%) melted by a high frequency induction furnace and cast into a Y block CO2 mould with 30 mm in thickness. From the viewpoint of heat treatment, tensile strength and hardness of SG irons become larger in the order of ferritised<as cast<austempered ones. Matrix structures of SG irons, which are conducted to austempering treatment from α and γ mixture range, consists of bainitic ferrite with high toughness. Austempered SG iron with 3%Ni in 0˙1%Mn series is found to become higher tensile strength compound with elongation and toughness of 901 MPa, 17% and 915 kJ m?2.  相似文献   

4.
Flake graphite iron,compacted graphite iron and spheroidal graphite iron with various tensile strengths were cast. They were selected and grouped according to roughly the same tensile strength,and then the main cutting force in each group was measured and compared. The microstructures of different cast irons were characterized. The relationship between the cutting force and microstructure was established. Results show that the graphite morphology in cast irons determines the strength. In order to obtain the same strength of the cast iron with sharply edged graphite,more or finer pearlite in the matrix is needed. Graphitic cast irons with high pearlite content and smaller pearlite interlamellar spacing have higher hardness. For the cast irons with different graphite morphologies,but almost the same tensile strength,the main cutting force is obviously different,along with the hardness. Harder cast irons have a greater cutting force,but the difference in cutting force is not proportional to hardness.  相似文献   

5.
根据球墨铸铁铸造的理论依据,结合具体生产实践,对QT600—3、QT450—10的铸造工艺进行了实验研究和分析,并分别设计了相应的解决措施去消除缺陷,然后通过大批量生产和跟踪调查,对措施的有效性进行了改进、修正和评价,使铸造工艺更合理。综合多年的实践,介绍了球墨铸铁件在生产工艺过程中的优质控制,通过严格控制化学成分、生产工艺过程,使球化、孕育处理效果较好,达到了所需球墨铸铁的性能指标,获得了较好的技术经济效果。  相似文献   

6.
Most iron castings retain their as cast surfaces because of their geometric complexity and to minimise the machining costs. However, the mechanical properties that are documented in standards (i.e. ASTM) are tested on fully machined test bars. Therefore, the effect of the as cast surface and subsurface features (commonly referred as ‘casting skin’) on mechanical properties should be evaluated. Preliminary works have shown the negative effect of the casting skin on mechanical properties of grey and ductile irons. This paper reviews the recent works on the casting skin effect on tensile and fatigue properties in compacted graphite and ductile irons. It was found that the tensile and fatigue strength were reduced by 9 and 40% respectively because of the presence of the casting skin. In addition, the correlations between processing parameters (e.g. nodularity and section thickness) and the casting skin features were presented. The experimental results suggest that the Mg depletion because of metal–mould and metal–air interactions was the main reason for the formation of the casting skin.  相似文献   

7.
Abstract

The influence of copper content (0·26 to 1·31 wt-%) on microstructure formation and mechanical properties of compacted graphite iron (CGI) has been evaluated through standard metallographic analysis, colour etching techniques and tensile testing of machined test bars. The properties investigated are yield strength, tensile strength and elongation. The castings were made in an industrial environment from a combination of CGI returns, pig iron, cast iron- and steel scrap. A total of four heats were cast in specially designed sampling cups (3 different cooling rates), chill wedges as well as tensile test bars machined from sand moulded cylinders (20, 45 and 85 mm in diameter). The results clearly illustrate the combined effect of copper and cooling rate on nodularity, chilling tendency as well as pearlite content. A discussion concerning the effect of graphite morphology on the ferrite growth is also included.  相似文献   

8.
9.
Abstract

Low-carbon cast iron (1.7–1.8% C, 1.7–2.2% Si) test bars and castings were prepared in a production foundry for evaluation of their microstructures and mechanical properties. The experimental variables were (a) inoculant types and (b) heat treatment cycles. Results indicate that low-carbon ductile cast irons with graphite present in spheroidal/compacted form may be satisfactorily produced on an industrial scale, after appropriate inoculation. However, a short normalising cum tempering heat treatment is necessary for the development of optimum mechanical properties. Low carbon irons can be satisfactorily welded to similar grades of cast irons as well as to steel.  相似文献   

10.
研究了不同含量的Cu、Mn对球铁曲轴组织和性能的影响规律,同时对比分析了普通砂型和壳型填铁丸两种工艺条件下球铁曲轴的组织和性能。结果表明,当0.6wt%Cu与0.4wt%Mn配合时,可以获得抗拉强度较高的珠光体球铁,其强度与伸长率均满足QT600—3的要求。与普通砂型相比,壳型填铁丸工艺条件有利于球铁中总石墨球增多、圆整度提高及珠光体含量的提高,使性能得到改善。  相似文献   

11.
This study focuses on the modelling and simulation of local mechanical properties of compacted graphite iron cast at different section thicknesses and three different levels of silicon, ranging from about 3.6% up to 4.6%. The relationship between tensile properties and microstructure is investigated using microstructural analysis and statistical evaluation. Models are generated using response surface methodology, which reveal that silicon level and nodularity mainly affect tensile strength and 0.2% offset yield strength, while Young′s modulus is primarily affected by nodularity. Increase in Si content improves both the yield and tensile strength, while reduces elongation to failure. Furthermore, mechanical properties enhance substantially in thinner section due to the high nodularity. The obtained models have been implemented into a casting process simulation, which enables prediction of local mechanical properties of castings with complex geometries. Very good agreement is observed between the measured and predicted microstructures and mechanical properties, particularly for thinner sections.  相似文献   

12.
This work presents an experimental and numerical study of the solidification process of an eutectic spheroidal graphite cast iron (SGI). The effect of the cooling rate on the thermal–microstructural response is particularly analysed. To this end, experiments as well as numerical simulations were carried out. The experiments consisted in a solidification test in a wedge-like casting such that different cooling rates were measured at specific positions along the part. A metallographic analysis was also performed in five locations of the sample with the aim of obtaining the number and size of graphite nodules at the end of the process. The numerical simulations were made using multinodular based and uninodular based models. These two models predicted similar results in terms of cooling curves and nodule counts. Besides, good experimental–numerical agreements were obtained for both the cooling curves and the graphite nodule counts.  相似文献   

13.
祖方遒 《铸造》2012,61(1):11-16
灰铸铁、蠕铁、球铁被统称为灰口铸铁,在现代工业中应用广泛.在主要成分相近情况下,由于微量元素等条件的不同引起石墨生长形态各异,从而同属灰口铸铁的三类铸铁性能迥异.懂得其基本规律及相关原理,有益于铸造工程技术人员在灰铁、蠕铁、球铁的生产实际中理性而有效地控制产品质量.本文基于灰口铸铁的奥氏体-石墨共晶凝固方式,从基本概念及原理、G形成过程、实际组织观察与分析的全新视角,主要针对灰铁和球铁概述了石墨形态的形成规律和机理.文中诸多图片等实例是以往国内教科书及专业书籍中未见的,文章内容也体现了对相关现象描述及观点上新的发展,有助于读者对该方面有关问题获得更为清晰的理解和认识.  相似文献   

14.
《Acta Materialia》1999,47(14):3779-3792
The general aim of this series of three papers is to build a useful tool to predict microstructures and microsegregations which develop during solidification of spheroidal graphite cast irons (SGI). Input data for such a model should be the melt composition and preparation (inoculation treatment), and the casting and cooling conditions. The first two papers focused on phenomena and results involved when segregation of alloying elements other than carbon, such as silicon, could be ignored; solidification in the stable system moreover, only was considered. The present paper is intended to broaden the field of application of the model published previously to account for the main effects of redistribution of substitutional species on the solidification behavior of SGI and on the final microsegregation in as-cast condition. The possibility for metastable eutectic to nucleate and grow is also accounted for. The basic set of mass balance equations is presented and microsegregation of silicon is studied in detail. The effects of the various casting variables on the competition between stable and metastable eutectic solidification of SGI are quantified.  相似文献   

15.
合成铸铁熔炼工艺及增碳剂吸收率影响因素   总被引:1,自引:0,他引:1  
介绍了合成铸铁熔炼过程中的增C原理及增C剂粒度、增C剂加入量、温度、铁液搅拌、铁液化学成分对增C剂吸收率的影响。说明了感应电炉熔炼合成铸铁的配料比、加料顺序和炉内加入增C剂、炉外增C的方法。经过增C剂增C处理后的铸铁,石墨形态基本为A型石墨,抗拉强度比非合成铸铁高15~30MPa,硬度提高10HB左右,铸件本体硬度更加均匀。  相似文献   

16.
柳松青 《现代铸铁》2005,25(1):19-21
采用铜合金金属型和铸铁金属型浇注灰铸铁和球铁Y形试块,加入不同量的Mn、Ti、Cu和Sn,研究金属型材料和添加合金对灰铸铁和球铁抗拉强度和疲劳强度的影响。结果发现:与采用铸铁金属型浇注相比,未加合金、采用铜合金金属型浇注的灰铸铁和球铁的力学性能略高。采用铜合金铸型浇注时,由于冷速较快,使石墨和基体组织细化的作用较强,添加合金元素改善力学性能的作用较为明显,而且反复浇注时,铜合金金属型的热应力较小。因此,灰铸铁和球铁采用铜合金金属型铸造比采用铸铁金属型有利。  相似文献   

17.
Graphite nucleation, growth and morphology play an important role in determining the physical and mechanical properties in different cast irons. This paper discusses the factors controlling the formation of flake and spheroidal forms of graphite. It also attempts to explain the formation and morphology of the compacted graphite.  相似文献   

18.
Despite the increased usage of pearlitic compacted graphite iron (CGI) in heavy vehicle engines, poor machinability of this material remains as one of the main technical challenges as compared to conventional lamellar iron. To minimise the machining cost, it is believed that solution-strengthened CGI material with a ferritic matrix could bring an advantage. The present study focuses on the effect of solution strengthening of silicon and section thickness on tensile, microstructure and hardness properties of high-Si CGI materials. To do so, plates with thicknesses from 7 to 75 mm were cast with three different target silicon levels 3.7, 4.0 and 4.5 wt%. For all Si levels, the microstructure was ferritic with a very limited pearlite content. The highest nodularity was observed in 7 and 15 mm plate sections, respectively, however, it decreased as the plate thickness increased. Moreover, increasing Si content to 4.5 wt% resulted in substantial improvement up to 65 and 50% in proof stress and tensile strength, respectively, as compared to pearlitic CGI. However, adding up Si content to such a high level remarkably deteriorated elongation to failure. For each Si level, results showed that the Young’s modulus and tensile strength are fairly independent of the plate thickness (30–75 mm), however, a significant increase was observed for thin section plates, particularly 7 mm plate due to the higher nodularity in these sections.  相似文献   

19.
Chapter 3 Spheroidal Graphite Cast Iron(I) Spheroidal Graphite Cast Iron, SG iron in short, refers to the cast iron in which graphite precipitates as spheroidal shape during solidification of liquid iron. The graphite in common commercial cast iron can only be changed from flake to spheroidal shape by spheroidising treatment. Since spheroidal graphite reduces the cutting effect of stress concentration, the metal matrix strength of SG iron can be applied around 70%-90%, thus the mechanical property of SG iron is significantly superior to other cast irons;even the tensile strength of SG iron is higher than that carbon steel.  相似文献   

20.
The influence of overlap multi-pass friction stir processing on the microstructure and the mechanical properties, in particular, strength, ductility and hardness of die cast Al–7Si–3Cu aluminum alloy was investigated.It was observed that increase in the number of overlap passes friction stir processing resulted in significant refinement and redistribution of aluminum silicon eutectic phase and elimination of casting porosities. The microstructural refinement by the friction stir processing not only increases the ultimate tensile strength from 121 to273 MPa, but also increases the ductility as observed by the increase in fracture strain from 1.8% to 10%. Analysis of the fractured surface reveals that the microstructural refinement obtained by friction stir processing plays a vital role in transforming the fracture mode from completely mixed mode to the ductile mode of the fracture with increasing number of passes. The change in the size, shape, morphology and distribution of eutectic silicon particles and elimination of the porosities are the main reasons for the increases in tensile strength and ductility due to friction stir processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号