首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Thermodynamic Analysis for Microstructure of High-Entropy Alloys   总被引:1,自引:0,他引:1  
对高熵合金系的液相与晶态相、金属间化合物相及非晶相之间的吉布斯自由能之差这几个热力学参数进行了分析,发现△Sr△Hh(sol.)值的大小对高熵合金的显微结构有重要影响.结果表明:△Sr△Hh(sol.)值较低的高熵合金倾向于形成单相fcc或bcc固溶体,而△Sr△Hh(sol.)值较大的高熵合金通常形成相对复杂的结构.  相似文献   

4.
Ternary fcc Ni-Co-Mo diffusion couples annealed at 1273 and 1473 K have been scanned to measure composition profiles by using electron probe microanalysis. The interdiffusion coefficients were extracted using the Whittle–Green method from the measured composition profiles of the ternary diffusion couples. Based on the diffusion coefficients reported in the literature and data determined in the present work, the diffusion mobilities for fcc Ni-Co-Mo alloys were assessed. In addition, diffusion paths and composition profiles were simulated with presently assessed mobility parameters. In general, reasonable agreements have been reached and the resulted mobility database can be used to investigate the diffusion behavior of the ternary fcc Ni-Co-Mo alloys in wide composition and temperature ranges.  相似文献   

5.
6.
近年来,高熵合金凭借其新颖的设计理念和优异的各类物化性能成为金属结构材料领域的研究热点。随着轻量化合金设计理念的不断普及,“熵调控”的概念也被广泛应用于开发新型轻质合金。轻质高熵合金是基于合金轻量化设计的一类低密度的新型高熵合金,其开发与设计主要利用经验参数准则、相图计算以及第一性原理计算相结合的方法。其中,Al-Ti-V基轻质高熵合金凭借其优异的力学性能、良好的高温抗氧化性及耐腐蚀性等优点,受到了广泛关注。本文基于Al-Ti-V基轻质高熵合金的研究现状,从成分设计、制备方法、结构特征以及各类物化性能特点等方面进行了综述,并指出了Al-Ti-V基轻质高熵合金所面临的问题与挑战。  相似文献   

7.
8.
9.
采用k近邻(KNN)、支持向量机(SVM)、决策树(DT)、随机森林(RF)和人工神经网络(ANN)5种机器学习(ML)方法对RHEAs中固溶体(SS)、混合固溶体和金属间化合物(SS+IM)进行了分类和预测。选择了5个输入相预测参数作为特征以及139组RHEAs数据以训练ML模型。结果表明,ANN模型的预测准确率最高,达到90.72%。9组新的四元和(TiVTa)xCr1–x体系RHEAs的实验结果显示,RF和ANN的预测精度更高,精准预测了11个SS和3个SS+IM合金的相组成。采用了SHAP(SHapley Additive exPlanations)模型来解释精度最高的ANN模型,并研究每个特征对相形成的贡献。5个特征的重要性顺序是混合焓(ΔHmix)、原子尺寸差(δ)、价电子浓度(VEC)、混合熵(ΔSmix)和电负性差(Δχ),其中ΔHmix的平均SHAP值大约是Δχ的5倍,是ΔSmix的4倍。较大的ΔHmix<...  相似文献   

10.
寻求可打印金属材料的研究至关重要。近年来,多种可打印性良好的材料已被发掘出来,如Ti-6Al-4V、FeMnCoCrNi、不锈钢及一些难熔高熵合金。尽管已经获得了诸多可喜结果,增材制造难熔高熵合金依然发展缓慢。由于难熔高熵合金的优越高温性能,复杂成形的需求也日渐高涨。本文主要介绍了增材制造难熔高熵合金的一些研究进展,综述了有关难熔高熵合金激光增材制造、电子束增材制造和丝材增材制造技术,并为后续研究工作提供参考。此外,本文也系统地讨论了有关增材制造难熔高熵合金面临的机遇和挑战。  相似文献   

11.
Recently,various topics on high-entropy alloys have been reported and great amounts of excellent properties have been investigated,including high strength,great corrosion resistance,great thermal stability,good fatigue and fracture properties,etc.Among all these research activities,high-entropy alloys tend to form face-centered-cubic(FCC) or body-centeredcubic(BCC) solid solutions due to their high-entropy stabilization effect,while the hexagonal structures are rarely reported.Up to now,the reported hexagonal high-entropy alloys are mainly composed of rare-earth elements and transitional elements.Their phase transformation and magnetic properties have also aroused wide concern.This study summarizes the above results and provides the forecast to the future.  相似文献   

12.
Gu  X. Y.  Dong  Y. N.  Zhuang  Y. X.  Wang  J. 《Metals and Materials International》2020,26(3):292-301
Metals and Materials International - The objective of this study is to investigate the effect of Sn content on the microstructure and mechanical properties of the CoCrFeMnNiSnx high entropy alloys....  相似文献   

13.
14.
A new metallurgical strategy, high-entropy alloying (HEA), was used to explore new composition and phase spaces in the development of new refractory alloys with reduced densities and improved properties. Combining Mo, Ta, and Hf with “low-density” refractory elements (Nb, V, and Zr) and with Ti and Al produced six new refractory HEAs with densities ranging from 6.9 g/cm3 to 9.1 g/cm3. Three alloys have single-phase disordered body-centered cubic (bcc) crystal structures and three other alloys contain two bcc nanophases with very close lattice parameters. The alloys have high hardness, in the range from H v = 4.0 GPa to 5.8 GPa, and compression yield strength, σ 0.2 = 1280 MPa to 2035 MPa, depending on the composition. Some of these refractory HEAs show considerably improved high temperature strengths relative to advanced Ni-based superalloys. Compressive ductility of all the alloys is limited at room temperature, but it improves significantly at 800°C and 1000°C.  相似文献   

15.
Alloy Design and Properties Optimization of High-Entropy Alloys   总被引:2,自引:0,他引:2  
This article reviews the recent work on the high-entropy alloys (HEAs) in our group and others. HEAs usually contain five or more elements, and thus, the phase diagram of HEAs is often not available to be used to design the alloys. We have proposed that the parameters of ?? and ?? can be used to predict the phase formation of HEAs, namely ??????1.1 and ??????6.6%, which are required to form solid-solution phases. To test this criterion, alloys of TiZrNbMoV x and CoCrFeNiAlNb x were prepared. Their microstructures mainly consist of simple body-centered cubic solid solutions at low Nb contents. TiZrNbMoV x alloys possess excellent mechanical properties. Bridgman solidification was also used to control the microstructure of the CoCrFeNiAl alloy, and its plasticity was improved to be about 30%. To our surprise, the CoCrFeNiAl HEAs exhibit no apparent ductile-to-brittle transition even when the temperatures are lowered from 298?K to 77?K.  相似文献   

16.
AlxCoCrCuFeNi多主元高熵合金的微观结构和力学性能   总被引:3,自引:0,他引:3  
研究了不同Al含量的AlxCoCrCuFeNi多主元高熵合金的微观组织和力学性能.结果表明:微观组织为简单的枝晶和枝晶间组织.当Al含量较低时,合金的晶格结构为单一的FCC相.随着Al含量的增加,原本单一的FCC相逐步转化为FCC相和有序BCC相共同组成的组织.高熵效应以及元素扩散的困难使合金形成了简单的固溶体结构,同时伴随有纳米第二相的析出.与此同时,随着Al含量的增加,合金的硬度HV有了显著的提高,从1530 MPa 提高到7350 MPa,相应地,合金由塑性材料变为中低温脆性材料.  相似文献   

17.
Phase competition and stability of several typical high-entropy alloys (HEAs) were studied, and the effects of alloying additions and processing conditions on phase formation in these alloys were discussed. Alloying with chemically incompatible elements having a large difference in either the atomic size or enthalpy of mixing with constituting components in HEAs, e.g., Cu and Al in the FeCoNiCr alloy system, inevitably induced phase separation and stimulated formation of duplex solid-solution phases and even intermetallic compounds. The solid-solution phase in the as-cast FeCoNiCrMn HEA is extremely stable due to the good chemical compatibility among constituent components, but in the FeCoNiCrAl and (FeCoNiCrAl)99Si1 HEAs with the incompatible elements Al and Si, pretreatment and annealing processes could induce phase transitions and the formation of new phases, indicating that the as-cast solid-solution phases were destabilized by quenched-in chemical segregation, resulting from additions of the dissimilar elements.  相似文献   

18.
High-entropy alloys (HEAs) are composed of multiple principal elements and exhibit not only remarkable mechanical properties,but also promising potentials for developing numerous new compositions.To fully realize such potentials,high-throughput preparation and characterization technologies are especially useful;thereby,the fast evaluations of mechanical properties will be urgently required.Revealing the relation between strength and hardness is of significance for quickly predicting the strength of materials through simple hardness testing.However,up to now the strength-hardness relation for HEAs is still a puzzle.In this work,the relations between tensile or compressive strength and Vickers hardness of vari-ous HEAs with hundreds of compositions at room temperature are investigated,and finally,the solution for estimating the strengths of HEAs from their hardness values is achieved.Data for hundreds of different HEAs were extracted from stud-ies reported in the period from 2010 to 2020.The results suggested that the well-known three-time relation (i.e.,hardness equals to three times the magnitude of strength) works for nearly all HEAs,except for a few brittle HEAs which show quite high hardness but low strength due to early fracture.However,for HEAs with different phase structures,different strengths should be applied in using the 3-time relation,i.e.,yield strength for low ductility body-centered cubic (BCC) HEAs and ultimate strength for highly plastic and work-hardenable face-centered cubic (FCC) HEAs.As for dual-phase or multi-phase HEAs,similar 3-time relations can be also found.The present approach sheds light on the mechanisms of hardness and also provides useful guidelines for quick estimation of strength from hardness for various HEAs.  相似文献   

19.
A new formalism recently developed by Belova et al., based on linear response theory combined with the Boltzmann–Matano method, allows determination of tracer and interdiffusion coefficients simultaneously from a single, isotope-free, traditional diffusion couple experiment. An experimental methodology with an analytical approach based on the new formalism has been carried out using the model Cu-Ni system to effectively determine tracer diffusion coefficients from an isotope-free diffusion couple experiment. Cu thin films were deposited in between several binary diffusion couples with varying terminal alloy compositions (Cu-25Ni, Cu-50Ni, Cu-75Ni, Ni). Diffusion couples were annealed at 800, 900 and 1000 °C, and the superimposed concentration profiles of thin film and interdiffusion were analyzed for the simultaneous determination of tracer and interdiffusion coefficients. Processed concentration profiles obtained from the diffusion experiments were also fitted with simple Gaussian distribution function. Results were compared to existing literature data obtained independently by radiotracer experiments, and an excellent agreement has been observed.  相似文献   

20.
正High-entropy alloys (HEAs),novel alloys,were proposed by the Prof.Jien-Wei Yeh,in 2004.The introduction of HEAs design concept breaks the shackles and opens up a new era in the field of alloys design.More and more research reports show that HEAs have many special physical,chemical and mechanical properties Now,HEAs have become the most popular research direction in the field of metal alloys.Almost all the research institutions and universities around the world have carried out research on HEAs.HEAs have  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号