首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Deposition Features of Ti Coating Using Irregular Powders in Cold Spray   总被引:1,自引:0,他引:1  
The investigation on the deposition features of irregular Ti powders coated on Al and stainless steel (SS) substrates was conducted in this study. Ti coating was experimentally produced at different gas inlet temperatures, and then detailed analysis on the critical velocity, coating microstructure, porosity, and microhardness was performed. As an assistant method, numerical simulation was also adopted to study the deformation features of single-irregular Ti particle during the cold spray process. The results reveal that the critical velocity of Ti particle on Al substrate is higher than that on SS substrate due to the different substrate hardness. The coating porosity is shown to be decreasing as the inlet temperature increases and independent to the substrate material. Similar phenomenon is also noticed for coating microstructure, but the changing trend is reverse in this case. Finally, the most important finding is that an additional torque imposed on the irregular particle is generated during the deposition process, which tends to detach the bonded particle from the substrate surface.  相似文献   

2.
Deposition of multicomponent coatings by Cold Spray   总被引:1,自引:0,他引:1  
Cold Spray multicomponent coatings are deposited by a new powder injection method that consists of separate injection of each component of the powder mixture into a different zone of the carrier gas stream. Temperature and velocity of 10-40 µm-sized aluminium and copper particles at the nozzle outlet are calculated. It is shown that these values depend considerably on the location of the point where the powder was injected into the gas stream. The method is experimentally validated by producing a composite aluminium-copper coating.  相似文献   

3.
Ni-WC composites are ideal protective coatings against wear and are often fabricated using laser cladding and thermal spray processes, but the high temperatures of these processes result in decarburization, which deteriorates the performance of the coating. Cold spray has the potential to deposit Ni-WC composite coatings and retain the composition of the initial WC feedstock. However, the insignificant plastic deformation of hard WC particles makes it difficult to build up a high WC content coating by cold spray. By using three different WC powder sizes, the effect of feedstock powder size on WC retention was tested. To improve WC retention, a WC/Ni composite powder in mixture with Ni was also sprayed. Microstructural characterization, including the deformed structure of Ni splats, retention, distribution, and fragmentation of WC, was performed by scanning electron microscopy. An improvement in WC retention was achieved using finer WC particles. Significant improvement in WC particles retention was achieved using WC/Ni composite powder, with the WC content in the coating being close to that of the feedstock.  相似文献   

4.
Copper lines with widths varying from 150 to 1500 μm were deposited onto crystalline silicon wafers and soda-lime glass plates by cold spraying copper particles with 1 μm average diameter through a mask. This direct deposition method yielded high-aspect-ratio electrodes with minimum shadowing effects and maximum electrode-to-silicon contact area. The copper lines had triangular cross sections with aspect ratios (height/width) ranging from 0.1 to 1.1, depending on the number of spray gun passes. Copper particles were densely packed with increasing the width of the masking slit. This study presents the potential use of the cold spray technology in printing lines as front electrodes in solar cell applications.  相似文献   

5.
In this paper, metal-ceramic coatings are cold sprayed taking into account the spray parameters of both metal and ceramic particles. The effect of the ceramic particle velocity on the process of metal-ceramic coating formation and the coating properties is analyzed. Copper and aluminum powders are used as metal components. Two fractions of aluminum oxide and silicon carbide are sprayed in the tests. The ceramic particle velocity is varied by the particle injection into different zones of the gas flow: the subsonic and supersonic parts of the nozzle and the free jet after the nozzle exit. The experiments demonstrated the importance of the ceramic particle velocity for the stability of the process: Ceramic particles accelerated to a high enough velocity penetrate into the coating, while low-velocity ceramic particles rebound from its surface.  相似文献   

6.
Previous research has demonstrated deposition of MCrAlY coating via the cold spray process; however, the deposition mechanism of cold spraying has not been clearly explained—only empirically described by impact velocity. The purpose of this study was to elucidate the critical deposit condition. Microscale experimental measurements of individual particle deposit dimensions were incorporated with numerical simulation to investigate particle deformation behavior. Dimensional parameters were determined from scanning electron microscopy analysis of focused ion beam-fabricated cross sections of deposited particles to describe the deposition threshold. From Johnson-Cook finite element method simulation results, there is a direct correlation between the dimensional parameters and the impact velocity. Therefore, the critical velocity can describe the deposition threshold. Moreover, the maximum equivalent plastic strain is also strongly dependent on the impact velocity. Thus, the threshold condition required for particle deposition can instead be represented by the equivalent plastic strain of the particle and substrate. For particle-substrate combinations of similar materials, the substrate is more difficult to deform. Thus, this study establishes that the dominant factor of particle deposition in the cold spray process is the maximum equivalent plastic strain of the substrate, which occurs during impact and deformation.  相似文献   

7.
In this study, the impact and deposition behavior of nickel particles onto relatively soft 6061-T6 aluminum alloy and copper substrates in a kinetic spray process was investigated by comparing individual particle impact with full coating deposition. The results indicated that the deposition onset of nickel coatings on the two substrates follows different deposition mechanisms depending on corresponding deformability of the impact couples (substrate and particle). Nickel particles were hardly attached onto the relatively soft 6061-T6 substrate in case of individual impact, but the deposition onset of full coating took place depending on embedding, tamping of successive impact and metallurgical “cold welds” of viscous metal at impact interface when the impinging particles’ velocity was relatively low. In case of Ni-Cu impact, the bonding formed at the peripheral impact interface dominated the deposition onset of nickel coating due to the comparable deformability of the impact couples (Ni and Cu).  相似文献   

8.
Cold spraying is a successful and promising coating technique for many engineering applications due to its high-rate and high-dense coating development abilities. Nevertheless, their practical use in polymer substrate is still in the fledgling phase. There are very few articles about the cold spray coating on polymers; however, the interaction of metallic particle with the polymer substrate is poorly understood, and thus a thick coating has not successfully been developed on the polymer substrate. In order to rationalize as full as possible the entire behavior of the high velocity particle with the polymer substrate, we used thermoplastic and thermosetting polymer materials as substrates. The particle behaviors with the substrate were observed under various gas pressure and temperature, and with various particles feed rate. The result showed that the particle behaviors were unique with respect to the substrate. Also it was clearly understood that the metal particles not experienced any plastic deformation due to the soft nature of the polymer substrates. The particles attached to the thermoplastic substrate either through adhesive bonding and/or mechanical inter locking, whereas only pure localized fracture observed on the thermosetting substrate and thus no particles attached firmly on the substrate.  相似文献   

9.
Multi-traverse CS provides a unique means for the production of thick coatings and bulk materials from powders. However, the material along spray and spray-layer boundaries is often poorly bonded as it is laid by the leading and trailing peripheries of the spray that carry powder particles with insufficient kinetic energy. For the same reason, the splats in the very first layer deposited on the substrate may not be bonded well either. A mathematical spray model was developed based on an axisymmetric Gaussian mass flow rate distribution and a stepped deposition yield to predict the thickness of such poorly-bonded layers in multi-traverse CS deposition. The predicted thickness of poorly-bonded layers in a multi-traverse Cu coating falls in the range of experimental values. The model also predicts that the material that contains poorly bonded splats could exceed 20% of the total volume of the coating.  相似文献   

10.
A simple modified cold spray process in which the substrate of AZ51 alloys were preheated to 400 °C and sprayed with hydroxyapatite (HAP) using high pressure cold air nozzle spray was designed to get biocompatible coatings of the order of 20-30 μm thickness. The coatings had an average modulus of 9 GPa. The biodegradation behavior of HAP-coated samples was tested by studying with simulated body fluid (SBF). The coating was characterized by FESEM microanalysis. ICPOES analysis was carried out for the SBF solution to know the change in ion concentrations. Control samples showed no aluminum corrosion but heavy Mg corrosion. On the HAP-coated alloy samples, HAP coatings started dissolving after 1 day but showed signs of regeneration after 10 days of holding. All through the testing period while the HAP coating got eroded, the surface of the sample got deposited with different apatite-like compounds and the phase changed with course from DCPD to β-TCP and β-TCMP. The HAP-coated samples clearly improved the biodegradability of Mg alloy, attributed to the dissolution and re-precipitation of apatite showed by the coatings as compared to the control samples.  相似文献   

11.
Cold spray offers the possibility of obtaining almost zero-porosity buildups with no theoretical limit to the thickness. Moreover, cold spray can eliminate particle melting, evaporation, crystallization, grain growth, unwanted oxidation, undesirable phases and thermally induced tensile residual stresses. Such characteristics can boost its potential to be used as an additive manufacturing technique. Indeed, deposition via cold spray is recently finding its path toward fabrication of freeform components since it can address the common challenges of powder-bed additive manufacturing techniques including major size constraints, deposition rate limitations and high process temperature. Herein, we prepared nickel-based superalloy Inconel 718 samples with cold spray technique and compared them with similar samples fabricated by selective laser melting method. The samples fabricated using both methods were characterized in terms of mechanical strength, microstructural and porosity characteristics, Vickers microhardness and residual stresses distribution. Different heat treatment cycles were applied to the cold-sprayed samples in order to enhance their mechanical characteristics. The obtained data confirm that cold spray technique can be used as a complementary additive manufacturing method for fabrication of high-quality freestanding components where higher deposition rate, larger final size and lower fabrication temperatures are desired.  相似文献   

12.
Cold spray is a developing technology that is increasingly finding applications for coating of similar and dissimilar metals, repairing geometric tolerance defects to extend expensive part life and additive manufacturing across a variety of industries. Expensive helium is used to accelerate the particles to higher velocities in order to achieve the highest deposit strengths and to spray hard-to-deposit materials. Minimal information is available in the literature studying the effects of He-N2 mixing on coating deposition efficiency, and how He can potentially be conserved by gas mixing. In this study, a one-dimensional simulation method is presented for estimating the deposition efficiency of aluminum coatings, where He-N2 mixture ratios are varied. The simulation estimations are experimentally validated through velocity measurements and single particle impact tests for Al6061.  相似文献   

13.
冷喷涂技术   总被引:3,自引:0,他引:3  
冷喷涂技术是近年来发展迅速的工业表面喷涂新技术.本文介绍了冷喷涂技术的原理、系统构成与冷喷涂的特点,以及影响冷喷涂主要工艺参数、粒子沉积行为与涂层性能等研究现状.并结合国内外的发展现状对冷喷涂技术的应用前景进行了展望.  相似文献   

14.
冷喷涂技术     
冷喷涂技术是近年来发展迅速的工业表面喷涂新技术。本文介绍了冷喷涂技术的原理、系统构成与冷喷涂的特点,以及影响冷喷涂主要工艺参数、粒子沉积行为与涂层性能等研究现状。并结合国内外的发展现状对冷喷涂技术的应用前景进行了展望。  相似文献   

15.
In this work, the microstructures of B4C/Ni coatings by cold spray with blends or chemical vapor deposited (CVD) Ni-coated powders were investigated and compared. Powder blends with Ni powder and fine or coarse B4C powders were prepared for various B4C content ranging from 54 to 87?vol.% (equal to 25-65?wt.%). Three CVD Ni-coated B4C powder batches were also synthesized with various B4C content using the fine B4C as core particles. Ni-coated powders and both types of cold sprayed coating microstructures with blends or coated powders were investigated by optical and scanning electron microscopy. Further quantitative image analysis was carried out on scanning electron microscopy (SEM) images to measure the B4C content within the coating regarding the influence of the nominal content in the feedstock for each coating type. Both types exhibited fine fragments and unfragmented B4C, but coatings with CVD-coated powders had many more unfragmented particles. Moreover, the higher levels for both B4C (44.0?±?4.1?vol.%) and coating microhardness (429?±?41 HV0.5) were obtained in case of the CVD-coated powders. However, it was assessed that the highest microhardness was not obtained for the highest B4C content. This questionable result is discussed with regard to the fully original composite microstructure obtained from CVD Ni-coated B4C powder.  相似文献   

16.
Nano-engineered self-lubricating particles comprised of hexagonal-boron-nitride powder (hBN) encapsulated in nickel have been developed for cold spray coating of aluminum components. The nickel encapsulant consists of several nano-sized layers, which are deposited on the hBN particles by electroless plating. In the cold spray deposition, the nickel becomes the matrix in which hBN acts as the lubricant. The coating demonstrated a very promising performance by reducing the coefficient of friction by almost 50% and increasing the wear resistance more than tenfold. The coatings also exhibited higher bond strength, which was directly related to the hardenability of the particles. During the encapsulation process, the hBN particles agglomerate and form large clusters. De-agglomeration has been studied through low- and high-energy ball milling to create more uniform and consistent particle sizes and to improve the cold spray deposition efficiency. The unmilled and milled particles were characterized with Scanning Electron Microscopy, Energy-Dispersive X-Ray Spectroscopy, BET, and hardness tests. It was found that in low-energy ball milling, the clusters were compacted to a noticeable extent. However, the high-energy ball milling resulted in breakup of agglomerations and destroyed the nickel encapsulant.  相似文献   

17.
During the cold spraying of particle-reinforced metal matrix composite coatings (ceramic and metal particles mixture) on metal substrates, ceramic particles may either get embedded in the substrate/deposited coating or may rebound from the substrate surface. In this study, the dependence of the ceramic rebounding phenomenon on the spray angle and its effect on substrate erosion have been analyzed using finite-element analysis. From the numerical simulations, it was found that the ceramic particle density and substrate material strength played the major roles in determining the embedding and ceramic retention behavior. Substrate material erosion also influenced the ceramic retention, and the material loss increased as the impact angles decreased from normal. In general, the results concluded that decreasing the impact angle promoted the retention possibility of ceramics in the substrate. This study provides new theoretical insights into the effect of spray angles on the ceramic retention and suggests a new route toward optimizing the spraying process to increase the ceramic retention in composite coatings cold spray.  相似文献   

18.
19.
20.
在分析喷射沉积过程主要特点的基础上,着重分析了影响喷射沉积过程各参数之间的复杂关系.这种复杂关系难以用一个简单的物理模型加以描述.目前国内外普遍使用计算机模拟的方法来预测沉积坯锭的形状与性能.讨论了模拟过程的一般方法,比较详细地叙述了金属释放、金属雾化和金属凝固等三个物理过程的模拟方法,举例说明了模拟结果和实际相符合的事实,表明了模拟结果的可靠性.最后,说明了模拟的前沿问题和热点问题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号