首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
利用2种镍钛形状记忆合金(SMA)研制了大尺寸超弹性螺旋弹簧,对其进行了单轴反复荷载作用下的滞回性能试验,研究了超弹性SMA螺旋弹簧的恢复力特性与耗能能力,分析了加载频率、位移幅值对2种SMA螺旋弹簧滞回曲线以及等效刚度、单位循环耗能、等效阻尼比和残余位移等力学性能参数的影响;采用刚弹性模型和Bouc-Wen模型,建立了适用于整体结构分析的SMA螺旋弹簧简化恢复力模型,并利用该模型进行了数值模拟。结果表明:超弹性SMA螺旋弹簧具有稳定的滞回曲线,且具有良好的复位性能和大变形能力,可用于结构自复位控制装置的研发;数值模拟结果与试验结果吻合较好,验证了简化恢复力模型的正确性。  相似文献   

2.
提出了一种兼具自复位、变摩擦和高耗能于一体的新型形状记忆合金-弧面摩擦复合阻尼器,该阻尼器由形状记忆合金复位装置和变摩擦耗能装置两部分组成。基于Brinson模型和摩擦学建立了该阻尼器的恢复力模型,并利用Simulink对其力学性能进行了数值模拟。研究结果表明:所建立的恢复力模型能够很好地描述该阻尼器的力学性能;随着位移幅值的增加,阻尼器的耗能能力逐渐增大,加载频率对其耗能能力影响不大,在建筑结构中能够保持稳定的耗能特性,具有一定的工程应用前景。  相似文献   

3.
为了使隔震结构体系能够同时获得良好的隔震特性及震后自复位能力,本文利用形状记忆合金(SMA)材料在相变伪弹性阶段具有较好阻尼性能这一特点,采用SMA自复位阻尼器与常规叠层橡胶垫组合成自复位隔震装置。根据SMA材料相变伪弹性的本构模型,对SMA自复位阻尼器在反复循环荷载下的力学行为进行了数值模拟,得到了相应的滞回耗能曲线。提出了一种针对SMA自复位阻尼器的分段线性化恢复力模型,并依据剪切型层模型理论,编制了设有SMA自复位阻尼器隔震结构在地震作用下的弹塑性时程分析程序,对设有这种新型隔震装置工程结构进行地震反应分析。分析结果表明,这种隔震装置不仅可以大大减轻地震对上部结构的影响,而且还具有很好的震后复位能力,因此具有较好的工程应用前景。  相似文献   

4.
研制开发了一种新型自复位形状记忆合金复合摩擦阻尼器(HSMAFD),该新型阻尼器由超弹性形状记忆合金丝和摩擦装置复合而成,并通过模型试验研究了新型阻尼器在循环荷载作用下的力学性能。制作了一个三层两跨单向偏心钢框架缩尺模型,进行了新型阻尼器偏心结构平动及扭转耦联震动反应振动台试验。考虑了不同考虑场地条件对结构地震反应的影响,对比分析了无控结构和装有新型阻尼器有控结构的震动反应。研究结果表明,新型超弹性形状记忆合金复合摩擦阻尼器对结构的平动及扭转角位移均有一定的控制效果,但场地条件对控制效果有较大的影响。  相似文献   

5.
综合形状记忆合金(shape memory alloy,SMA)材料和摩擦机制的优点,提出了一种具有耗能时序的变摩擦自复位阻尼器(self-centering variable friction damper with energy-dissipation sequences,SVFDES)。首先说明了SVFDES的构造设计及变形模式,开展了SMA棒的循环拉伸试验研究以确定材料的力学参数。之后利用经试验验证的数值模拟方法建立了SVFDES的精细化有限元模型,通过参数分析识别并研究了影响该阻尼器滞回性能的关键参数。最后通过对阻尼器的隔离体进行受力分析,推导了阻尼器滞回行为的理论计算公式。结果表明:(1) SVFDES在往复荷载作用下兼具自复位能力和耗能能力,并且呈现出“变摩擦”、“变刚度”的特征;(2)阻尼器的滞回行为对摩擦副的几何构形、摩擦面的摩擦系数较为敏感,而与SMA元件的预紧力弱相关;(3)理论计算公式和数值模拟的结果较为吻合。  相似文献   

6.
提出一种新型形状记忆合金(shape memory alloy,简称SMA)-摩擦复合阻尼器。该阻尼器由超弹性SMA单元和高耗能摩擦单元串联而成,通过控制摩擦单元的摩擦力大于SMA单元的最大输出力,可实现自动调节耗能单元工作状态的功能,即:较小荷载作用下,仅SMA单元工作,消耗能量少,具有自复位功能;较大荷载作用下,SMA单元和摩擦单元依次工作,消耗大量能量,具有一定的变形回复能力。对阻尼器进行拉压循环力学试验,研究了位移幅值、加载频率和扭矩对其输出力-位移曲线以及摩擦力、割线刚度、单位循环耗能量、等效阻尼比、残余位移等力学参数的影响。将基于Graesser本构模型基础上的SMA单元力学模型和摩擦单元的理想刚塑性模型串联,建立了阻尼器的力学模型;数值模拟结果与试验结果吻合较好,证明了该力学模型的正确性。  相似文献   

7.
为提升装配式RC框架结构的可恢复性能,提出了一种带有可控塑性铰的自复位装配式RC梁柱节点(PJ-CPH),其中可控塑性铰是由机械铰、摩擦耗能装置和碟簧自复位装置组合而成。将碟簧自复位装置简化为非线性弹簧元件,摩擦耗能装置简化为蜗簧元件和阻尼元件串联,给出了PJ-CPH的力学模型,建立了PJ-CPH的恢复力模型。采用ABAQUS软件对5个不同设计参数的PJ-CPH在低周往复荷载作用下的滞回性能进行模拟,结果表明:PJ-CPH的滞回曲线呈现“旗帜形”特征,提出的恢复力模型与有限元计算结果吻合良好,能够较好预测PJ-CPH的滞回特性;碟簧自复位装置提供的复位弯矩与摩擦耗能装置的启动弯矩平衡时,摩擦片残余弹性扭转变形无法完全自复位;在摩擦耗能装置启动弯矩不变的情况下,当复位率大于1.00时,提高复位率并不能减小梁端残余位移,反而会增加残余位移。  相似文献   

8.
研制了一种新型自复位变摩擦阻尼器。该阻尼器由圆柱螺旋压缩弹簧和耗能摩擦单元串联而成,通过铣削钢板实现变摩擦力,并控制圆柱螺旋压缩弹簧的预压力大于摩擦单元的最大输出力,实现自复位功能。本文对该阻尼器进行了拉压循环力学试验,并分别研究了扭矩、位移幅值和加载频率对其滞回曲线和力学参数(单位循环耗能、割线刚度、和等效阻尼比)的影响。利用ABAQUS有限元分析软件建立了实体单元模型,并对其进行了数值模拟。数值模拟结果与试验结果吻合较好,证明了试验结果的正确性。  相似文献   

9.
当设置SMA滑动摩擦阻尼器延展为自复位支撑时,连接的刚度可能影响支撑的力学性能,支撑可能会出现面内旋转和整体失稳。为检验由形状记忆合金滑动摩擦阻尼器和钢管串联而成的自复位支撑能否实现预期的滞回性能,针对支撑的轴向刚度、转动刚度和稳定性进行理论分析。通过往复加载试验获得了形状记忆合金棒的滞回曲线和摩擦机制的动摩擦系数。制作了1个1/3缩尺的支撑试件,并进行了拟静力试验和频率为1.0 Hz的动载试验,结果表明,轴向荷载作用下,支撑的荷载-位移滞回曲线呈光滑稳定的旗帜形,展示出优越的自复位能力和良好的耗能能力。基于滞回曲线,分析了支撑的承载力、割线刚度、耗散能量和等效黏滞阻尼比等滞回性能参数,发现其等效黏滞阻尼比可达16%。建立了支撑的三维有限元模型,数值模拟与试验数据吻合良好。通过数值模拟对钢管的轴向刚度予以分析,发现当钢管的轴向刚度降低至文中基准模型刚度的20%时,可能导致钢管屈服和支撑整体失稳。  相似文献   

10.
预压弹簧自恢复耗能支撑由内管、外管、摩擦耗能装置及组合碟簧自复位装置组成,对其受力性能进行分析,并建立了描述该支撑滞回特性的恢复力预测模型。通过对预压弹簧自恢复耗能支撑的低周往复加载试验,研究其滞回特性、自恢复性能及耗能能力,并与建立的预测模型进行了对比分析。结果表明:预压弹簧自恢复耗能支撑具有稳定的“旗形”滞回曲线,耗能能力随摩擦耗能装置提供摩擦力的增大而增大,且碟簧间及碟簧与内管间摩擦可为支撑提供一定耗能能力;当碟簧预压力能够克服摩擦耗能装置提供的摩擦力时,支撑具有更好的自恢复性能。所建立的恢复力预测模型与试验的滞回曲线吻合较好,能够有效地反映支撑的实际受力情况。  相似文献   

11.
由于形状记忆合金具有优良的力学性能,近年来在土木工程领域受到广泛关注.通过在不同的循环加载条件下对形状记忆合金丝材进行的拉伸试验,以相变应力、相变应变、弹性模量、残余应变、耗能能力等作为合金丝材的超弹性特征参数,分析这些特征参数与应变幅值、加载频率、循环次数的关系.结果表明:应变幅值和循环次数对形状记忆合金超弹性性能的影响较大,而加载频率的影响基本可以忽略,实际应用时,应根据具体情况进行试验研究并合理设计.  相似文献   

12.
提出了一种具有简单构造形式、既能在震后为结构提供回复力,又能避免索体预应力损失的装配式零初始索力摩擦耗能复位支撑,并对该支撑的抗震性能进行了理论分析。结果表明:该支撑在加载过程中无刚度退化现象,滞回曲线呈四边形状,曲线饱满且耗能规律稳定|支撑复位停止后,放松黄铜-槽孔钢摩擦板耗能器中高强螺栓,可使支撑继续复位至位移零点,该支撑具有很好的复位功能。  相似文献   

13.
The most critical drawback in currently used steel reinforcement in reinforced concrete (RC) structures is susceptibility to accumulation of plastic deformation under excessive loads. Many concrete structures due to damaged (yielded) steel reinforcement have undergone costly repairs and replacements. This research presents a new type of shape memory alloy (SMA)-based composite reinforcement with ability to withstand high elongation while exhibiting pseudo-elastic behavior. In this study, small diameter SMA wires are embedded in thermoset resin matrix with or without additional glass fibers to develop composite reinforcement. Manufacturing technique of new proposed composite is validated using microscopy images. The proposed SMA-FRP composite square rebars are first fabricated and then embedded in small scale concrete T-beam. 3-point bending test is conducted on manufactured RC beam using a cyclic displacement controlled regime until failure. It is found that the SMA-FRP composite reinforcement is able to enhance the performance of concrete member by providing re-centering and crack closing capability.  相似文献   

14.
将超弹性形状记忆合金(Shape Memory Alloy,简称SMA)圆截面棒材原料加工得到标准试件。针对上述SMA棒试件进行了拟静力试验,系统研究了应变幅值、加卸载速率、循环加卸载次数对其相变应力、等效刚度、单位循环耗能量、等效阻尼比和残余应变五个力学性能参数的影响。试验研究表明,SMA棒可提供较为理想的超弹性效应。同时,由试验结果亦可观察到SMA棒的耗能和阻尼能力较低。总的来看,超弹性SMA棒可提供较大的输出力和稳定的复位性能,适合作为大尺寸阻尼器的复位器件用于工程结构的减振控制。  相似文献   

15.
基于形状记忆超弹性拉索耗能器的框架振动控制研究   总被引:3,自引:0,他引:3  
本文分析了形状记忆合金(SMA)超弹性拉索耗能器的工作原理,研究了SMA耗能器的超弹性恢复力模型,并将该种耗能器安装在2层框架结构模型上,进行了框架结构振动试验。对装有SMA拉索耗能器与装有钢丝的框架结构分别进行了地震响应分析。试验和数值模拟结果表明,形状记忆合金耗能器可有效地降低结构的振动反应,是一种性能良好的消能减振装置。  相似文献   

16.
形状记忆合金对混凝土梁驱动效应分析   总被引:18,自引:0,他引:18  
着重研究形状记忆合金偏心埋置于混凝土梁后 ,合金在逆相变过程中对梁变形的驱动效应。研究了合金预应变值、配置量及直径粗细、混凝土龄期、通电激励模式、试件养护方法及截面尺寸等因素对于梁变形性能(合金驱动效应 )的影响规律。试验结果表明 :合金在逆相变过程中能对混凝土梁产生很大的驱动力 ,使得对梁挠度值的主动控制与调整成为可能 ;可以按需要增加预应力值 ,以补偿预应力损失等 ;合金的预应变值、配置量、通电激励模式、直径粗细等因素对于合金的驱动效应有较大影响。  相似文献   

17.
工程结构的SMA超弹性减振技术及其应用研究   总被引:6,自引:0,他引:6  
介绍了形状记忆合金 (SMA)超弹性减振技术的减振机理 ,研制一种性能良好的SMA超弹性阻尼器 ,介绍了其工作原理及性能测试试验结果。将该阻尼器安装在斜拉桥模型上 ,进行了斜拉桥模型振动试验。试验结果表明 ,该阻尼器的耗能效果明显 ,在工程结构振动控制方面具有比较好的应用前景  相似文献   

18.
超弹性形状记忆合金丝(NiTi)力学性能的试验研究   总被引:17,自引:0,他引:17  
从土木工程振动控制的角度出发 ,通过NiTi形状记忆合金丝处于超弹性状态下的力学性能试验 ,研究温度、加载速率、应变幅值、循环次数等加载工况对形状记忆合金的相变应力、耗能能力、变形模量及残余应变等力学性能参数的影响规律 ,并给出了各力学性能参数与主要影响它的加载工况之间的关系。试验和分析结果表明 ,处于超弹性状态下的形状记忆合金具有良好的耗能阻尼性能、较大的可恢复变形能力和很高的结构驱动能力 ,可满足土木工程结构振动控制的需要。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号