首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
非均匀布风流化床的DEM模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
对二维非均匀布风流化床内的颗粒运动进行了数值模拟,用欧拉方法处理气相场的同时用拉格朗日方法处理离散颗粒场,直接跟踪颗粒场中的每个颗粒。模拟结果表明,非均匀布风流化床内存在颗粒的内循环运动,因此颗粒的混合特性优于均匀布风流化床。  相似文献   

2.
气固流化床的离散颗粒运动-碰撞解耦模型与模拟   总被引:4,自引:0,他引:4  
基于分子动力学和气固两相流体动力学,建立流化床稠密气-固两相离散颗粒运动-碰撞解耦模型,采用硬球模拟方法处理颗粒与颗粒之间的碰撞,及大涡模拟方法处理气相湍流流动.单颗粒运动满足牛顿第二定律,颗粒相和气相相间相互作用的双向耦合由牛顿第三定律确定,数值模拟二维鼓泡流化床内稠密气-固两相流动,得到了气泡的形成、发展及颗粒的流化过程,计算结果表明颗粒弹性恢复系数影响气-固两相流动特性。  相似文献   

3.
惯性分离器内气固两相流雷诺应力数值模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
对循环流化床中气田惯性分离过程进行了详细的数值研究。湍流模型采用雷诺应力模型,研究对象为U型分离器内的气一固两相流动。为了真实描述固体颗粒与分离器壁面之间的碰撞过程,固体颗粒模拟采用颗粒轨道模型,引入壁面粗糙度的影响,同时考虑了固体颗粒在湍流中的扩散作用和颗粒之间的相互碰撞。模拟计算了不同入口速度、分离器挡板数目对颗粒分离效率和流体压降的影响,计算结果不仅给出了分离器内的气-固两相流动结构特性,而且给出了分离器效率、压降与入口主流速度和分离器结构参数的关系。  相似文献   

4.
针对目前密相气力输送数值模拟过程中所存在的关键问题,提出了一种描述固相内部相互作用对颗粒运动影响的数学模型,采用该模型能够对稠密气固两相流动(乃至颗粒发生大量沉积的情况)进行数值模拟.新模型在离散颗粒模型的基础上,通过描述颗粒所在局部空间的固相浓度及颗粒群运动特征所建立,使其既能够模拟悬浮流动的稀相颗粒运动,又能模拟管内出现堆积情况的密相气固两相流.利用所建立的数学模型对高压密相煤粉气力输送的颗粒流动过程进行了数值模拟.模拟结果显示,随着颗粒粒径增大,粉体密相气力输送流型从沉积层流变化为沙丘流,进而演变成栓塞流的演变过程,并结合实验验证了典型的栓塞流、沙丘流等流型特征;并且平均栓塞长度随着粒径的增大而减小,而随着粉体粒径的增大,输送管道中固相容积份额则整体上呈增大趋势.  相似文献   

5.
A population balance model is derived for heat transfer processes in gas–solid systems with intensive motion of particles in order to describe the temperature distribution of particulate phase. The model involves collisional particle–particle and particle–wall heat transfers, and continuous gas–particle, gas–wall and wall–liquid environment heat transfer processes. Collisional heat transfers are characterised by collision frequencies and random heat exchange parameters with general probability distributions with support [0, 1], describing the heat transfer efficiency between the colliding solid bodies. An infinite hierarchy of moment equations, describing the time evolution of moments of the temperature of particle population is derived from the population balance equation, which can be closed at any order of moments. The properties of the model and the effects of parameters are examined by numerical experiments using the second order moment equation model of a spatially homogeneous fluidized bed.  相似文献   

6.
颗粒-颗粒相间曳力是影响鼓泡流化床流体动力行为的重要因素之一。本文基于欧拉-欧拉双流体气固两相流模型,采用考虑了颗粒分离斜度系数的颗粒-颗粒相间曳力模型,对床内具有两种不同颗粒尺寸、底部均匀布风的鼓泡流化床进行了数值模拟研究,并将模拟结果与Owoyemi等的实验及数值模拟结果进行了比较。研究结果表明考虑颗粒分离斜度系数的颗粒-颗粒相间曳力模型合理地预测和分析了床内颗粒分离等特性。  相似文献   

7.
流化床密相区流动特性的数值模拟   总被引:9,自引:0,他引:9       下载免费PDF全文
流化床内气固两相流动一直是实验研究和数值模拟的热点。基于Eulerian双流体模型,本文建立了流化床内的气固两相流动模型,采用FLUENT软件对流化床密相区两相流动特性、床内气泡的产生运动和爆裂等特性进行了数值模拟。模型中,将颗粒相看作是连续介质,建立与气相相同形式的数学模型;采用了离散介质动力理论,引入颗粒温度来描述固相粘性应力,并用气固曳力进行气固两相耦合。模拟得到了气泡产生、运动和爆裂的变化过程,与实验结果相一致。采用不同的曳力模型对流化床稠密两相流动进行了模拟,与Kuipers实验对比,结果表明采用Gidaspow曳力模型描述流化床稠密两相流动特性更准确。  相似文献   

8.
流化床表面传热系数的直接数值模拟   总被引:2,自引:0,他引:2  
采用数值试验方法对表面传热系数进行了直接数值模拟.在流化床表血传热系数模型中,流体相的运动和传热规律以Euler方法描述,对固体颗粒相运动和传热规律则以离散单元法(DEM)在颗粒层次上进行描述.利用该模型,对一个二维鼓泡流化床内瞬时和局部传热系数进行了模拟,得到了瞬态表面传热系数随流化速度的变化规律,以及局部传热系数随高度的变化规律.该规律与Ozkaynak等人的实验研究结果以及Syamlal等人采用颗粒相拟流体模型的数值模拟结果相一致,但与双流体数学模型相比,该模型所需主观假设较少且适用范围更广.  相似文献   

9.
Solid particle erosion (SPE) in an ultra-supercritical steam turbine control stage with block configuration is investigated numerically, based on the finite volume method and the fluid-particle coupling solver. We apply the particle discrete phase model to model the solid particles flow, and use the Euler conservation equations to solve the continuous phase. The investigation is focused on the influence of the solid particle parameters (such as particle diameter, particle velocity and particle trajectory) on the erosion rate of the stator and rotor blade surface in unsteady condition. The distributions of the highly eroded zone on the stator and rotor blade surfaces are shown and discussed in detail according to the mechanism of solid particle/blade wall interaction. We obtain that the erosion rate of the vane blade is sensitive to the fluctuation of the potential flow field, and the smaller particle has a greater impact on the erosion distribution of rotor blade. The erosion rate does not entirely depend on the diameter size of the solid particle.  相似文献   

10.
《Combustion and Flame》1999,116(1-2):297-301
This paper identifies distinctive regimes for the combustion of particles in a packed bed. The study is based on the relevant time and length scales for combustion and transport in both the solid fuel and the gas phase within the voids in a packed bed. Characterizing the combustion of a particle and a packed bed by the dimensionless groups, the Damköhler number, and the Thiele modulus, four different combustion regimes are identified. Two of them resemble the well-stirred reactor with uniform reaction throughout the packed bed, whereas the particles may follow the kinetically or transport-limited reaction path. For the remaining regimes a conversion front propagates with its characteristic velocity through the packed bed, independent of whether the combustion of particles within the conversion front follows the reacting or the shrinking core mode.  相似文献   

11.
为了研究喷动流化床煤部分气化炉的气-固流动特性,采用三维欧拉多相流模型和颗粒动能理论相结合的数学模型,对一台直径100 mm的喷动流化床试验台进行了数值模拟研究.研究内容包括喷动流化床不同工况下内部射流的发展、气-固流动特性、典型工况下气体速度分布、颗粒速度分布以及由于颗粒碰撞引起的颗粒相压力分布.模拟结果表明:典型工况下,当喷动风与总风的比例为50%时,流场有利于煤气化;气体曳力和颗粒碰撞对环形区颗粒特别是靠墙区颗粒的运动影响很大.为了验证模型的合理性,采用文献中的试验工况进行计算,计算结果和文献中的测量值吻合较好.  相似文献   

12.
This article discusses a simulation study performed to investigate the effect of particle collision on inter-particle and gas–solid heat transfer processes, and other related bed flow characteristics. The effect of particle elasticity is presented using different values of the particle–particle coefficient of restitution. The simulation study was carried out using a two-dimensional model of a fluidized bed reactor incorporated to ANSYS Fluent 16.2 software. Two different materials, steel beads and sand particles, were used as the bed material fluidized by air. The simulation results are compared to those from previous studies on fluidized bed reactors containing a single bed material. The coefficient of restitution affected the bed hydrodynamics. Specifically, an increasing coefficient of restitution resulted in an increasing bed pressure drop and decreasing void fraction, granular temperature, particle velocity, and collision frequency. Conversely, increasing the particle coefficient of restitution resulted in decreasing the particle–particle heat exchange coefficient and the gas–particle heat transfer coefficient. The gas–particle heat transfer coefficient for sand particles was higher than that for steel beads. The effect of the coefficient of restitution on the flow characteristics from a binary mixture bed was quite similar to those of single material beds found in previous studies. This study demonstrated that the restitution coefficient clearly affected both the particle–particle and gas–particle heat transfer processes.  相似文献   

13.
流化床中单颗粒纤维素热解模型研究   总被引:2,自引:0,他引:2  
为了研究生物质热解过程,该文对纤维素这种生物质中主要组份的流化床热解过程进行了数值模拟。模型在合理选取动力学模型的基础上考虑了单颗粒纤维素在流化床热解过程中由扩散和对流所引起的热量传递,包括了各种重要的气、液相热解产物的质量传递以及颗粒内部压力对过程的影响。计算结果显示,即使是对非常小的颗粒,热解反应热对热解过程的影响也至关重要;而无论是在大颗粒还是小颗粒中,热解液相中间产物流动对能量、质量传递的影响以及挥发份参加颗粒内二次反应的份额则可以忽略。计算还得到不同粒径颗粒热解的产物分布。总体来说,该模型为我们提供了一个探究纤维素热解细节的机会。计算结果可以为实际热解反应器的设计和运行提供依据。  相似文献   

14.
移动颗粒层过滤除尘的数值模拟及实验对比   总被引:1,自引:0,他引:1       下载免费PDF全文
采用离散颗粒运动数学模型,对移动颗粒层过滤除尘器中粉尘颗粒与过滤介质颗粒碰撞以及对除尘效率的影响进行了初步研究,模拟计算了碰撞次数与系统风速之间的变化关系,与实验结果对比发现,随系统风速的变化,颗粒碰撞频次与除尘效率之间存在定性的一致。研究结果表明颗粒间碰撞作用对移动颗粒层除尘性能起着重要作用。  相似文献   

15.
Development of a comprehensive mathematical model to simulate the simultaneous heat and mass transfer processes in a bubbling fluidized bed is described. Although the model is applicable to a wide range of particles, wheat is chosen as an example. In the development of the model, the commonly used two‐phase theory is not used because of its insensitivity to the particle group used in the bed. Instead, a new hydrodynamic model is developed for each specific particle group. The behaviour of bubbles in a bed of group D particles (wheat) is modelled with the consideration that they grow in size as they rise in the bed, but are of the same size at any height in the bed. The voidage of bubbles, particles and interstitial gas is modelled separately. A newly developed expression to determine the minimum fluidization velocity of wet particles is used. The model considers the presence of different phases inside the bed, and their physical variation along the bed. The interstitial gas phase, the bubble phase, and the solid phase are modelled separately. The drying mechanism for the solid phase is considered in two stages: the falling rate, and the constant rate, with appropriate temperature and moisture diffusion coefficients and wall effects. The simultaneous heat and mass transfer processes during the drying process including the internal and external effects are modelled for each phase. A set of coupled nonlinear partial differential equations is employed to accurately model the drying process without using any adjustable parameters. A numerical code is developed to solve the governing partial differential equations using a control volume‐based discretization approach. Piecewise profiles expressing the variation of dependent variables between the grid points are used to evaluate the required integrals. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

16.
Solar gasification is one of the promising techniques to convert the carbonaceous materials to clean chemical fuels, which offers the advantages of being transportable as well as storable for extended period of time. In this study, thermal performance of a recently developed 5 kWth fluidized bed reactor for solar gasification has been investigated and reported. Discrete element method (DEM) has been used for modeling the granular flow, and computational fluid dynamics (CFD) method has been used for modeling the multiphase flow. To validate the developed model, experiments were preformed and compared with modeling results. Discrete ordinate radiation model has been used to solve the radiative transfer equation. The thermal performance of the reactor and particulate flow behavior have been predicted and the effect of particle size, particle size distribution and gas flow rate are analyzed. The results indicate that the performance of the bed increases when fluidizing the annulus region particles as the high porosity increases the diffusion rate of radiation throughout the bed.  相似文献   

17.
流化床反应器中颗粒与颗粒之间的传热在一定程度上决定了化学反应的速率及反应的中间历程。本文通过对气固流化床乳化相中颗粒群结构的进一步认识,建立了颗粒间的辐射换热模型,比较了不同颗粒直径、不同床层温度水平及不同流化工况下颗粒间辐射换热与通过气膜导热份额的大小,并预测了流化床反应器中反应颗粒与惰性床料之间的温差,对于流化床反应器选择合理的运行工况和进行操作参数优化具有参考价值  相似文献   

18.
The time-dependent variation of airborne particle concentration for different sizes in a test chamber was numerically predicted with drift-flux model. The performance of the drift-flux model for particle transport in different kinds of airflow fields was analyzed. The results show the drift-flux model can predict the transport of indoor fine particles reasonably well. When the air flow field varies slowly, the model can predict both the time-dependent variation ratio of the particle concentration and final stable concentration very well, and the difference for particles with different sizes can be also well predicted. When the air flow varies drastically, the accuracy of the model is decreased due to the neglect of the particles’ independent convective terms in the air flow.  相似文献   

19.
In this paper, recent advances in the discrete-element method (DEM) for describing motion, deposition, agglomeration or aggregation of a large number of adhesive spherical particles immersed in fluid flows, termed as adhesive particulate flow, are reviewed. The constitutive equations together with the length and time scales of DEM are compared with those of other similar Lagrangian particle methods, e.g., molecular dynamics (MD), Brownian dynamics (BD), dissipative particle dynamics (DPD). The adhesive contact force and torque models in the presence of different adhesive effects are examined, including van der Waals force, ligand-receptor binding, liquid bridging force, interface adhesion, and sintering forces, all of which play an important role in DEM formulations for different types of adhesive particulate flow problems of interest in energy, combustion and environmental fluid mechanics problems. A summary of various kinds of particle-field interactions is presented, including fluid forces, electric field forces, acoustic force, and thermophoretic force. The computational method is illustrated by application to a series of examples involving capture of spherical particles by a fiber in a uniform upstream flow, examining the deposition/aggregation patterns of both mono-size and binary-size particles on the cylinder with and without the presence of electric field effects, which may be due either to charging of the cylinder or polarization of the particles. Particle capture problems of this sort are commonly encountered in filtration problems and ash-removal problems experienced in environmental and combustion applications, respectively. The article concludes with a discussion of remaining modeling challenges in development of discrete-element methods for adhesive particulate flow fields.  相似文献   

20.
New thermal stochastic particle collision model in gas–solid flow in a riser is developed. The simulation is based on four-way coupling of phases considering inter-particle collision and heat transfer. It is shown that the limitation of excessive computational time in Eulerian–Lagrangian simulation of gas–solid flows for the high loading ratios is eliminated by using the stochastic particle collision model. The simulation results demonstrate that the predictions of the developed thermal stochastic particle collision modem are in good agreement with those obtained by the direct particle collision model and the available experimental data. The new stochastic modeling is used and nearly dense gas–solid flow is simulated for high loading ratios up to eight and the results are presented and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号