首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
高双折射光子晶体光纤特性分析   总被引:11,自引:8,他引:3  
建立了基于透明边界条件(TBC)的全矢量迦辽金有限元法(FEM)分析二维光子晶体光纤(PCF)的模型,并对椭圆芯等5种高双折射光子晶体光纤基模的模式双折射、限制损耗及色散特性进行了数值分析和比较.通过减小内包层中沿x方向的空气孔,增大沿y方向的空气孔构成的一种光子晶体光纤的模式双折射在波长1550 nm处高达5.96×10-3,而椭圆芯光子晶体光纤为1.52×10-3.研究表明,可通过增加内包层中两个正交方向上空气孔的尺寸差来获得高双折射;同时还得出内包层中放大的空气孔减小限制损耗,增加色散,而减小空气孔尺寸带来的影响则刚好相反;内包层上空气孔数量越少,色散越平坦.  相似文献   

2.
Numerical modeling of photonic crystal fibers   总被引:10,自引:0,他引:10  
Recent progress on numerical modeling methods for photonic crystal fibers (PCFs) such as the effective index approach, basis-function expansion approach, and numerical approach is described. An index-guiding PCF with an array of air holes surrounding the silica core region has special characteristics compared with conventional single-mode fibers (SMFs). Using a full modal vector model, the fundamental characteristics of PCFs such as cutoff wavelength, confinement loss, modal birefringence, and chromatic dispersion are numerically investigated.  相似文献   

3.
The triangular-lattice highly birefringent photonic crystal fibers(PCFs) with gradually increasing diameter of the air holes along radial axis are put forward. The modal birefringence, dispersion and confinement loss of the fundamental mode are simulated by full vector Galerkin finite element method(FEM) with a perfectly matched layer(PML). The results show that this PCF can keep low confinement loss when the rings of air holes are few. When the wavelength is 1.55 μm, the birefringence, the confinement loss of quick-axis and slow-axis are 1.365×10^-3, 0.017 dB/m and 0.051 dB/m, respectively. A new way is proposed to fabricate polarization-mainting fibers with high performance.  相似文献   

4.
A photonic crystal fiber (PCF) with circular air holes in the fiber cladding and elliptical air holes in the fiber core is proposed. According to calculation, both ultrahigh birefringence (larger than 0.01) and ultralow confinement loss (less than 0.001dB/km) can be achieved simultaneously over a large wavelength range for a PCF with only four rings of circular air holes in the fiber cladding. The confinement loss in this PCF can be effectively reduced while the birefringence almost remains the same. The proposed design of the PCF is a solution to the tradeoff between the birefringence and the confinement loss for the originally reported highly birefringent elliptical-hole PCF. Moreover, an approach to modify the effective index of fiber core is also suggested in this letter  相似文献   

5.
为了同时实现高双折射高非线性并得到低损耗,设计一种在光纤纤芯附近引入椭圆形空气孔和圆形空气孔组成的新型优化的八边形光子晶体光纤。采用全矢量有限元法结合各向异性完美匹配层,对该光纤的有效面积、非线性、双折射和损耗特性进行了模拟分析。数值模拟结果表明,通过选择适当的结构参数,在波长1.55 m处,该光纤具有高双折射高达B=1.6810-2,比普通光纤高两个数量级,高非线性系数为=60 W-1km-1和低损为0.6 dB/km。这种具有高双折射高非线性系数的光纤可用于光通信、偏振敏感的各种设备和产生超连续普等领域。  相似文献   

6.
Highly birefringent photonic crystal fibers (PCFs) with low confinement loss with ultralow and ultraflattened chromatic dispersions at wide wavelength band are presented. The transverse electric field vector distributions of two linearly polarized fundamental modes, their effective indices, modal birefringence, confinement losses and chromatic dispersion of the proposed PCFs are reported by using full-vector finite-element method (FEM). Significant improvements of PCFs in terms of the birefringence, chromatic dispersion and confinement losses are demonstrated by careful investigation of all air holes in each ring, air holes diameters and hole-to-hole spacing. In addition to this, the polarization beat length results of the proposed PCFs are also reported and discussed thoroughly.  相似文献   

7.
应用多极法理论计算了低折射率芯光子晶体光纤(PCF)基模的损耗并与未掺杂芯PCF进行了比较,发现可以从损耗的角度来理解低折射率芯PCF的截止特性:传输波长靠近短波长时,模式的损耗会突然变大,从而导致基模截止;而处于长波长时,这种光纤的传输特性和普通PCF相类似。通过改变纤芯折射率的大小和包层中空气孔的大小,可以对光纤的截止波长进行调节。  相似文献   

8.
Based on the full-vector finite element method with anisotropic perfectly matched layers, modal birefringence and confinement loss for the fundamental mode in rectangular-lattice photonic crystal fibers with different sizes of elliptical air holes in the cladding and the core are investigated numerically. The results show that the modal birefringence in this proposed photonic crystal fibers can be up to 5.64 × 10?2 at the wavelength of 1.55 μm. Moreover, when the birefringence is higher than 4 × 10?2, the confinement loss of x-polarized mode can be kept less than 0.005 dB/km at 1.55 μm. It means that the tradeoff between the high birefringence and the low confinement loss is overcome.  相似文献   

9.
A highly birefringent index-guiding photonic crystal fiber (PCF) with flattened dispersion and low confinement loss is proposed by introducing two small air holes with the same diameter in the core area. The fundamental mode field, birefringence, confinement loss, effective mode area and dispersion characteristic of the fibers are studied by the full-vector finite element method (FEM). Simulation results show that a high birefringence with the order of 10 -3 and a low confinement loss of 0.001 dB/km are obtained at 1550 nm. Furthermore, flattened chromatic dispersion from 1450 nm to 1590 nm is obtained.  相似文献   

10.
The study reports on the design and performance of two air‐filled and two partial ethanol‐filled photonic crystal fiber (PCF) structures with a tetra core for supercontinuum generation. The PCFs are nonlinear with ultra‐flattened zero dispersion. Holes with smaller areas are used to create a tetra‐core PCF structure. Ethanol is filled in the holes of smaller area while the larger holes of cladding region are air‐filled. Optical properties including dispersion, effective mode area, confinement loss, normalized frequency, and nonlinear coefficient of the designed PCF structures are investigated via full vector finite difference time domain (FDTD) method. A PCF structure with lead silicate as wafer exhibits significantly better results than a PCF structure with silica as wafer. However, both structures report dispersion at a telecommunication wavelength corresponding to 1.55 μm. Furthermore, the PCF structure with lead silicate as wafer exhibits a very high nonlinear coefficient corresponding to 1375 W?1 km?1 at the same wavelength. This scheme can be used for optical communication systems and in optical devices by exploiting the principle of nonlinearity.  相似文献   

11.
空气孔正方形排列光子晶体光纤的有限元分析   总被引:1,自引:1,他引:0  
采用全矢量有限元法结合完美匹配层吸收边界条件对渐增型空气孔正方形排列的高双折射光子晶体光纤的模场分布、限制损耗及双折射特性进行了数值模拟。仿真结果显示:该种结构的光子晶体光纤可以在包层空气孔层数仅为四层的情况下即可将限制损耗控制在1.31×10E-6 dB/m附近;同时横排内层空气孔的直径的变化可以有效地改变光纤的模式双折射曲线的走向,在长波长区间这种影响更为明显。  相似文献   

12.
椭圆芯光子晶体光纤的偏振特性   总被引:10,自引:5,他引:5  
采用全矢量模型研究椭圆芯光子晶体光纤(photonic crystal fibers,PCFs)的偏振特性。研究表明:椭网芯PCF基模的两个正交偏振态不再简并,模场具有较强的线偏振特性;模式双折射可达10^-3量级,该数值比传统椭圆保偏光纤至少高一个量级;在比传统椭圆保偏光纤更长的波长处获得零走离点和负走离区。椭圆芯PCF的偏振特性与光纤结构参数有较强的依赖关系,通过适当选择光纤的相对孔径和孔距,有望在给定的波长上实现高双折射和零走离单模运转,或设计出高双折射、大走离的单模光纤,为研制高性能保偏光纤提供了一个新的途径。  相似文献   

13.
The modal characteristics of photonic crystal fibers (PCFs), with guiding cores consisting of one or seven missing airholes, are investigated with the finite element method and compared to those of step-index fibers (SIFs). To extend the applicability of the classical SIF theories to PCFs, the effective refractive index of photonic crystal cladding and the effective core radius of a PCF are studied systematically, based on simple physically consistent concepts. With the new effective cladding index and core radius of PCFs, the classical definition of the V parameter for SIFs is extended to PCFs, and a highly efficient approach based on the effective-index method is developed for the design of PCFs. The new design approach has been successfully employed to analyze the modal properties of PCF lasers with depressed-index cores and further tested by using it to effectively estimate the number of guided modes for PCFs with large cores  相似文献   

14.
By using the supercell lattice method, we investigate the influence of the squeezing lattice on the birefringence characteristics of photonic crystal fibers (PCFs). We first define the concept of squeezing ratio and then present a model, with which several types of PCFs are simulated. Simulation results show that the squeezing of PCFs' lattice with the uniform air holes in the cladding can break the multifold symmetry of PCFs and make PCFs highly birefringent. Furthermore, it is reported for the first time to our knowledge that the polarity of PCFs' birefringence can change several times as the air-hole diameter changes.  相似文献   

15.
In this paper, the dependence of birefringence on the orientation of elliptical holes in triangular-lattice elliptical-hole photonic crystal fibers (PCFs) is investigated numerically. A resonant enhancement of birefringence between the anisotropic lattice arrangement and oriented elliptical holes is observed, and the birefringence varies periodically with the elliptical-hole orientation. When the major axes of adjacent elliptical holes are parallel, the birefringence approaches the maximum. Based on the numeric analysis, a novel highly birefringent PCF is proposed, and the maximum modal birefringence of 0.086 is achieved.  相似文献   

16.
采用全矢量有限元法研究了具有中心椭圆缺陷孔的矩形点阵PCF(光子晶体光纤)的双折射特性。结果发现,该新型PCF的双折射特性对波长和光纤的结构参数具有较强的依赖关系,与无中心椭圆缺陷孔的矩形点阵PCF相比,在中心缺陷孔参数bc/Λ=0.075、中心空气孔椭圆率η=2.2、包层结构参数Λ=2.0μm和d/Λ=0.48时,该新型PCF具有更高的双折射。  相似文献   

17.
《Optical Fiber Technology》2013,19(5):363-368
In this paper, two novel structures of photonic crystal fibers (PCFs) containing elliptical rings of circular air holes are presented. The circular air holes in both structures are arranged in seven elliptical rings, but the number of holes in each ring is different for these structures. Moreover, air hole diameter and hole-to-hole pitch are altered along the distance from the center of the fiber’s cross section. Properties, such as birefringence and confinement loss, of these structures with different numbers of air hole rings are numerically analyzed by using the multipole method. Numerical results show that a high birefringence of 1.626 × 10−3 can be reached at the wavelength of 1.55 μm, and a low confinement loss on the order of 10−8 dB/m can be achieved at the same wavelength. Furthermore, it is also found that elliptic ratio obviously affects birefringence and confinement loss, but the number of air hole rings has little impact on birefringence.  相似文献   

18.
A photonic crystal fiber (PCF) can realize a flat dispersion over a wide wavelength range that cannot be realized with a conventional single-mode fiber. However, the confinement loss tends to increase in a conventional dispersion-flattened PCF (DF-PCF) that has uniform air holes. In this paper, a novel PCF that has two cladding layers with different effective indices is proposed. The authors numerically show that the proposed PCF can achieve an ultralow dispersion variation of less than 0.8 ps/nm/spl middot/km in all telecommunication bands, with both a large effective area greater than 100 /spl mu/m/sup 2/ and a low confinement loss less than 0.01 dB/km.  相似文献   

19.
Photonic crystal fibers (PCFs) with elliptical air-holes located in the core area that exhibit high birefringence, low losses, enhanced effective mode area, and low chromatic dispersion across a wide wavelength range have been presented. The effects of bending on birefringence, confinement losses and chromatic dispersion of the fundamental mode of the proposed PCFs have been thoroughly investigated by employing the full vectorial finite element method (FEM). Additionally, localization of higher order modes is presented. Also, effects of angular orientation on bending loss have been reported. Significant improvement on key propagation characteristics of the proposed PCFs are demonstrated by carefully altering the desired air hole diameters and their geometries and the hole-to-hole spacing.  相似文献   

20.
In this paper, we present the design of a new photonic crystal fiber (PCF) gas sensor for evanescent-field sensing in terahertz (THz) wave band. This sensor can be used to identify the gas, and its size is very large, so that it is beneficial to fill it with the test substance. Based on simulation, we demonstrate that the gas sensor using PCFs with four noncir- cular large holes in the cladding has high sensitivity and low loss, the confinement loss is less than 0.007 dB/m, and the bending loss is very small. The new PCF gas sensor can detect kinds of gases, for example, if test gas is water va- por, it has obvious absorption peaks in THz band, and the sensitivities of gas sensor are 64% and 73% at 1.097 THz and 0.752 THz, respectively. Due to the ultra-low loss and high sensitivity of the model, the novel steering-wheel structured fiber is very suitable for evanescent-field sensing and the detection of chemical and biological products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号