首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
提出了一种紧凑型共面波导馈电的具有三阻带特性的超宽带天线。所设计天线的基本几何结构由共面波导(CPW)馈电线、菱形辐射贴片和矩形宽缝隙组成。通过在辐射贴片上刻蚀一个U型槽,以及在共面波导的接地面上增加两对L型的寄生旁枝结构来实现天线的三陷波特性。天线尺寸为32mm×32mm×0.508mm。仿真和实验结果表明,该天线在2.6~11.5GHz的频段内电压驻波比小于2,在3.15~3.80GHz、5.20~5.80GHz和8.2~8.7GHz三个频段内具有陷波特性,分别有效阻隔了Wi MAX系统、WLAN系统和ITU 8GHz频段信号对于超宽带(UWB)系统的干扰。在除三个阻带频段外的其余UWB工作频段范围内,具有良好的辐射方向特性和稳定的增益。仿真结果和实验结果表现出良好的一致性。  相似文献   

2.
文中提出了一种新型小尺寸具有三陷波特性的UWB天线。所设计的天线基本几何结构由50 Ω馈电线、圆形辐射贴片、缺陷地和一对开口谐振环组成,通过在天线的圆形辐射贴片上内嵌一对Y型贴片、地板上蚀刻出U型贴片和一对开口谐振环实现三陷波特性,天线的尺寸为30 mm×30 mm×16 mm。仿真和测试结果表明,该天线29~107 GHz的频段内回波损耗<-10 dB,在37~42 GHz、515~5825 GHz和79~84 GHz3个频段内具有陷波特性,分别有效抑制了C频段的卫星系统、WLAN系统和X频段卫星系统对超宽带系统的干扰。在除3个阻带频段外的其余UWB工作频段范围内,有着良好的辐射方向特性和稳定的增益。仿真结果和实验结果表现出了良好的一致性。  相似文献   

3.
提出了一款紧凑型多陷波特性超宽带天线,该天线由圆形贴片和改进的接地板组成。采用在辐射贴片上开两个圆弧状U形槽和接地板上开一个U形窄缝隙的结构使其具有多陷波特性。天线的体积仅为32 mm′25 mm′1.6 mm,结构紧凑。仿真与测试结果表明:该天线工作带宽为2.8 ~ 16 GHz,实现了3.2~3.8 GHz、4.5~5.5 GHz 和7.2~8.6 GHz 3个频段的陷波特性,有效阻隔了WiMAX(3.3~ 3.6 GHz)、大容量微波通信频段(4.5~5 GHz)、部分WLAN(5.1~5.35 GHz)、X波段(7.25~7.75 GHz)和国际电信联盟(ITU)波段(8.01~8.5 GHz)窄带信号的干扰。除陷波频段外该天线具有良好性能和辐射方向性,更适合应用于超宽带系统。  相似文献   

4.
一种应用于WLAN/WiMAX的双频微带天线   总被引:2,自引:2,他引:0  
提出了一种适用于WLAN/WiMAX的小型化双频微带天线。在矩形辐射贴片表面加载2/5形缝隙,改变矩形辐射贴片表面电流路径,使电流有效路径增加,实现天线的双频特性。通过电磁仿真软件HFSS 15.0对天线模型进行仿真分析。结果表明,天线可同时工作于WiMAX2.60 GHz和WLAN5.15 GHz频段,低频段和高频段的相对带宽分别为4%(2.53~2.64 GHz)和6%(5.14~5.48 GHz),最大增益分别为4.47 dB和1.35 dB,能够满足WLAN和Wi MAX的通信需求。天线整体辐射性能良好、结构简单、容易集成于前端电路。  相似文献   

5.
为满足主流物联网通信技术的应用需求,提出一种新型的矩形微带单极天线,适用于多频段通信,如射频识别、全球定位系统和无线局域网等。该矩形微带天线由一个带两个U形槽的矩形贴片和一个带两个长方形槽的接地面组成,具有四个工作频段,当谐振频率分别为1.22GHz, 2.47GHz, 3.61GHz和5.60 GHz时,相对带宽为25.7%(1.12~1.45 GHz)、25.3%(2.24~2.89 GHz)、15.7%(3.40~3.98 GHz)以及13.6%(5.21~5.97GHz)。仿真与实测结果显示,该天线的工作频段数量更多且相对带宽更高,在各工作频段内具有良好的全向辐射特性。  相似文献   

6.
设计了一款具有双频带阻特性的超宽带微带贴片天线。天线由50?矩形微带线馈电,频率覆盖范围为2.8~12 GHz。在天线辐射贴片上端开一对C形槽,实现了对3.3~3.6 GHz的Wi MAX频段的阻隔,并且在贴片下端使用阶梯结构实现了对5.15~5.825 GHz的WLAN频段的阻隔。对天线进行了加工与测试。结果表明,该天线的一对C形槽对Wi MAX频带阻隔作用明显,而阶梯结构不仅获得了在WLAN频段的带阻特性,而且与接地板上的矩形槽共同作用,还实现了天线的宽频带特性。天线的实测结果与仿真吻合良好。  相似文献   

7.
提出了一种微带馈电式圆形微带天线设计方案,通过在辐射贴片表面加载月牙型缝隙,改变电流有效路径,实现多频特性。通过HFSS仿真分析缝隙形状对天线性能的影响。结果表明,天线工作的三个频段相对带宽分别为4.1%(2.39~2.49 GHz),3.98%(3.92~4.08 GHz)和3.75%(5.51~5.72 GHz)。其中低频和中频段的最高增益达到6.58d B和5.01 d B。天线尺寸为35 mm×52 mm,具有小体积、高增益、全向性良好的特点,能够应用于无线通信系统中,并且这种结构简单、参数少、多频段的设计方法为天线设计提供了新的途径。  相似文献   

8.
通过仿真与实际测试结合的方法,研究并设计了一种用于UWB通信的、具有双阻带特性的紧凑椭圆单极子天线。双阻带特性是通过在辐射单元上插入一个缝隙和在馈线上引入一共面波导谐振单元实现的。测试结果表明此天线在3.45~3.75 GHz(覆盖了WIMAX频段)和5~6 GHz(覆盖了5.15~5.85 GHz的WLAN频段)分别有两个阻带,此外,驻波系数在3.1~10.6 GHz UWB的范围内小于2。天线的辐射特性也近似于全向。天线的增益和传输函数也证实了天线能达到双阻带特性。  相似文献   

9.
设计了一款共面波导馈电的多L型缝隙天线.通过在一个三角形辐射贴片上开L形缝隙实现多频的性能, 优化调整L形缝隙的大小以及相关参数可以灵活控制其每个频段的带宽.该天线具有多频带、小型化等特性, 通过共面波导馈电和采用高介电常数基板的方法降低了天线的谐振频率, 使得天线可以工作在更低频段.通过电磁仿真软件HFSS13.0对天线性能进行大量仿真实验与计算, 该天线在回波损耗小于-10 dB以下时, 其工作频段为1.254~1.276 GHz、1.537~1.623 GHz、1.804~1.845 GHz、2.097~3 GHz.该天线的结构简单、易于加工实现, 能够满足GPS、第三代第四代移动终端内置天线的小型化和多频段的要求.  相似文献   

10.
提出了一种小型陷波多用途超宽带微带天线。该天线与一般的宽缝隙微带天线类似,通过在矩形调谐支节上开V形缝隙获得了陷波特性。通过数值仿真和实验测量,对天线的阻抗特性、方向图和增益进行了研究。结果显示该天线在2.4到11GHz频段内驻波比小于2,在5.15~5.95 GHz范围内具有陷波特性。同时该天线还可覆盖2.4GHz无线局域网(WLAN)频段,在整个工作频段内有良好的辐射方向特性。  相似文献   

11.
文章设计了一款基于共面波导馈电的矩形微带天线,通过在矩形贴片天线辐射体上加载双开口谐振环使其同时工作于无线局域网(WLAN)频段和全球微波互联接入(Wi MAX)频段,以及X波段下行频段。通过仿真可知此天线在3.04~3.76GHz,5.2~6.2GHz,7.5~7.9GHz这3个频段内回波损耗均小于-10d B,具有良好的三频特性。  相似文献   

12.
为了避免超宽带通信中其他系统的干扰问题,设计了一种双阻带的超宽带天线。通过采用一种不等宽的条带结构,从而较好地实现了双阻带特性。除了在要求屏蔽的WiMAX频段(3.3~3.7 GHz)以及X频段的卫星通信下行频段(7.25~8.395 GHz),回波损耗S11在整个频段<-10 dB。通过仿真设计结果表明,该天线在3.38~3.58 GHz和7.29~8.13 GHz处均具有较好的阻带性质。  相似文献   

13.
通过在天线上开设不同形状和尺寸的槽,设计和制作了一种新型的采用微带馈电且具有双阻带特性的平面超宽带天线。通过HFSS对天线仿真并分析,总结出了槽结构参数对天线阻带特性的影响规律。仿真和实测结果表明,除阻带外,天线在3.015~13.27频带上的VSWR小于2,相对带宽达126%,在3.25~3.6GHz、5.15~5.825 GHz具有良好的阻带特性,较好地避免了系统与Wimax及WLAN之间的干扰。该设计天线在工作频段内具有很好的辐射方向性和增益,满足超宽带通信的需求。  相似文献   

14.
针对无线通信应用,设计了一种双频单极子天线,天线由共面波导馈电。天线的整体尺寸为30 mm×25 mm×0.8 mm,基板选用FR4。天线在平面单极子的基础上,通过在共面波导地平面上开槽,实现了双频特性;同时采用具有渐变结构的单极子贴片,实现了在较宽频带上良好的阻抗匹配。采用HFSS仿真软件对天线进行仿真,仿真结果表明:天线具有单极子天线的辐射特性,天线带宽较宽,在3.01~6.1 GHz反射损耗小于-10 d B,相对带宽达到了67.8%,工作频段覆盖了3.5/5.2/5.5/5.8 GHz频段。天线具有较好的全向辐射方向图和增益,其尺寸小、结构简单和易于加工,能够广泛用于WLAN和WiMAX通信系统中。  相似文献   

15.
设计了一种新型的基于多枝节结构的三频天线。该天线由共面波导馈电,天线整体尺寸为30 mm×35mm×1.5 mm,基板选用FR4,其相对介电常数为4.4。天线由三个贴片构成,通过调整三个贴片的长宽,可以使得三个贴片产生低频到高频三个中心频点,从而形成了三个工作频段。天线通过在贴片和共面波导的地平面中加入渐变结构,改善了三个频段上的阻抗匹配。采用仿真软件HFSS对天线进行了分析和优化。仿真结果表明,天线的–10d B工作频段分别为:2.33~2.75 GHz,3.15~3.75 GHz,4.35~6.07 GHz,能够较好地覆盖WLAN和Wi MAX的通信频段。天线的结构简单,尺寸较小,具有较好的辐射特性。  相似文献   

16.
一种新型加载两个开口环形接地导带的双频共面波导(CPW)馈电缝隙天线,被提出来实现双旋向圆极化辐射。从天线信号带伸入槽隙的水平矩形调谐短截线用于改善频带内的阻抗和轴比。对天线进行仿真和实物测量。实验结果表明,该天线的10 dB 回波损耗阻抗带宽分别是,在1.55 GHz 频段为27.69%(1.4~1.85 GHz),在2.55 GHz频段为26.17%(2.075~2.7 GHz)。在1.55 GHz的频段和2.55 GHz频段所测量的3 dB轴比带宽分别是20.51%(1.4~1.72 GHz)和13.44%(2.36~2.7 GHz)。其辐射极化方向分别是低频段右旋圆极化和高频段左旋圆极化,天线在两频段内的峰值增益分别是3.69 dB和3.81 dB。实物测试结果与仿真结果基本吻合。  相似文献   

17.
设计了一款新型的具有陷波特性的超宽带单极子天线。该天线的带宽为3. 1 ~ 12. 0 GHz,通过在矩 形辐射贴片上制作出对称的梯形结构、中心加载倒C 形缝隙、矩形开槽,并将窄矩形接地板切除两个边角,制作矩形 开槽结构,使得天线在3. 3 ~5. 35 GHz 频段产生陷波特性。该天线结构紧凑,尺寸仅为20 mm×25 mm×1. 0 mm。建 立天线模型,并对其进行仿真和优化。研究表明,天线在WiMAX 频段、C 波段、数字微波通信、大容量微波通信和部 分WLAN 等多个频段产生良好的陷波特性,且在工作频段内有良好的性能和辐射方向特性。  相似文献   

18.
提出了一种新型宽带双频圆极化射频识别(RFID)读写天线,由上层的旋转对称折合振子和缝隙加载的方形贴片以及下层的紧凑型馈电网络构成。天线具有两个外部端口,分别激励低频0.9 GHz和高频2.45 GHz双频段的圆极化辐射。借助HFSS对天线进行了建模、仿真和优化,最后采用FR4板材制作天线实物并完成了试验测试。天线的外部尺寸为0.6λ0×0.6λ0×0.1λ0(λ0为0.9 GHz频点下的自由空间波长),测试结果表明,天线在低频段和高频段的-10 dB阻抗带宽和3dB轴比带宽分别为91.1%(4.9%)和87.8%(1.3%),频段内的峰值增益为5.48 dBic(3.63 dBic),最小轴比为1.1 dB(1.2 dB),在高低频段内,天线的辐射方向图对称稳定。该天线不仅能够满足全球通用型UHF频段(0.84~0.96 GHz)和ISM频段(2.4~2.5 GHz)RFID读写应用需求,而且具有低成本、易加工等优点,在物联网领域将具有很好的应用前景。  相似文献   

19.
提出了一种可应用于5G无线通信的小型化双频微带天线,该天线采用偏心侧馈和贴片开槽的方式使其具有双频工作特性。首先研究了微带贴片尺寸和贴片上倒L型开槽对天线谐振频率的影响;其次通过在微带贴片的馈点旁增加矩形细缝来调节天线的阻抗匹配特性;最后,利用电磁仿真软件HFSS对所提出的天线的性能进行了仿真与优化,结果表明其两个工作频段可覆盖3.5~3.6GHz和4.8~5.0GHz的5G频段,两个工作频段内的回波损耗最大为23dB,辐射增益分别为2.83dB和4.35dB。  相似文献   

20.
提出利用复合左右手传输线结构的零阶谐振设计一款具有双频特性的电小天线。该电小天线主要由介质基板、地面、加载了交指电容的贴片、弯曲线电感与圆角矩形虚拟地组成,具有电小尺寸特性(电尺寸为0.75)。该天线有两个工作频段,频段1的中心频率为1.22 GHz,频段2的中心频率为2.78 GHz,对应的相对带宽分别为3.28%和27.34%,同时覆盖了GPS L2 (1220 MHz)与WiMAX (2500~2700 MHz)两个通信频段。天线在两个工作频段内均具有良好的辐射特性,频段1和频段2的平均峰值增益分别为1.0 dBi和1.72 dBi,平均辐射效率分别为53.12%和74.07%。最终对所设计的天线进行实物加工和测试,测试结果与仿真结果吻合良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号