首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
CaWO4 phosphor activated by the Tm3+/Yb3+,Er3+/Yb3+ and Ho3+/Yb3+ ions were synthesized by a traditional high-temperature solid-state method.The crystal structures and morphologies of the products were characterized by X-ray powders diffraction method(XRD) ,infrared spectra(FT-IR) and scanning electron microscopy(SEM) .The samples were found to show up-conversion luminescence properties.CaWO4 doped with Tm3+/Yb3+ showed blue luminescence characteristic of Tm(III) ion in the range of 460-485 nm,corresponding to the 1G4→3H6 electronic transition.CaWO4 doped with Er3+/Yb3+ showed strong green luminescence at 510-565 nm(2H11/2,4S3/2→4I15/2) and weak red luminescence at 640-685 nm(4F9/2→4I15/2) of Er(III) ion.CaWO4 doped with Ho3+/Yb3+ phosphor emitted green luminescence at 525-560 nm(5S2,5F4→5I8) and red luminescence at 630-670 nm(5F5→5I8) and at 730-770 nm(5S2,5F4→5I7) ,which is the characteristic of Ho(III) ion.  相似文献   

2.
The effects of lanthanides at various concentrations on CaCO3 crystal growth were studied by X-ray diffraction (XRD), infrared spectra (IR), X-ray photoelectric energy spectra (XPS) and inductively coupled plasma mtms spectrometry (ICP-MS). It was found that the calcite, a stable form of CaCO3 in thermodynamics, is the predominant species. The research indicates that lanthanide ions (Ln3 ) can partly substitute the Ca2 in the lattice of CaCO3 crystals, and change the crystal characterization and direct the ordinal growth of CaCO3 crystals.  相似文献   

3.
LaF3:Ln3+(Eu3+,Dy3+,Sm3+ and Tb3+) nanoparticles were prepared in different solvents such as water,EG(ethylene glycol),DMSO(dimethyl sulfoxide) and their mixed solvents at a relatively low temperature of 150 oC by simple chemical route.All the prepared samples showed hexagonal phase and exhibited spherical morphology.The highest luminescence intensity was observed for the samples prepared in EG than the samples prepared in other solvents.However,the sample prepared in water showed anomalously higher luminescence intensity than that of the sample prepared in DMSO.  相似文献   

4.
Phosphate glass samples with various Yb2O3 and Er2O3 contents were synthesized by the conventional melt quenching technique and characterized by X-ray diffraction,IR absorption spectroscopy and Raman scattering spectroscopy.The absorption,emission spectra and fluorescence decay studies were carried out both at low and room temperatures.Results showed the existence of several sites occupied by the rare earth ions in the phosphate glass.Up-conversion and cooperative fluorescence were also discussed.  相似文献   

5.
The photolumineseent (PL) and eleetroluminescent (EL) properties of a series of ligand emitting rare earth complexes (including y^3 , La^3 , Gd^3 and Lu^3 ) were systematically studied. These complexes have the same anionic ligand, 1-phenyt-3-methyl-4-isobutyryl-5-pyrazoloneate (PMIP), and three neutral ligands, triphenyl phosphine oxide(TPPO), 2, 2‘-dipyridine (Bipy) and phenanthroline (Phen). Measured with 60 nm thin film of these complexes vaporized in vacuum on quartz substrates, a good regularity in the PL properties was observed. For rational comparison, the same structural EL devices based on these complexes, ITO/PVK (40 nm)/the complex (80 nm)/Mg: Ag (200 nm)/Ag (100 nm), were fabricated. Excluding the exeiplex emission happens, the EL luminance usually increases with the increasing of PL efficiency.  相似文献   

6.
Nanoscaled SrAl12O19:Er3+ and SrAl12O19:Yb3+,Er3+ phosphors were synthesized by a combustion method.The emission intensities of every sample were compared by a new method with the emission of codoped Gd3+ ions as a reference.Compared with their bulk material prepared by the solid-state reaction method,a higher Er3+ quenching concentration,as high as 20%,was observed in the nanoscaled phosphors for both visible(VIS) and near infrared(NIR) emissions.The higher quenching concentration in both VIS and NIR regions for nanoscaled samples are related to the structure characteristics of the nano particles.The influence of the introduction of Yb3+ ions on the emission spectra intensity was also investigated and discussed.  相似文献   

7.
A novel Schiff base N′-[1-(3-aminophenyl)ethylidine]isonicotinohydrazide was prepared and its complexation behavior towards some selected lanthanides had been studied employing pH-metric and calorimetric titration and spectral techniques. pH-metric studies were carried out for the trivalent La, Pr, Nd, Sm, Eu, and Gd complexes in 30% aqueous-dioxane medium at constant ionic strength of 0.05 mol/L NaClO4 and at different temperatures of 293, 303 and 313 K. The proton-ligand formation constants of the ligand indicated the presence of only one dissociable proton while the metal-ligand formation constants were compatible with the formation of 1:1 Ln(Ⅲ) complexes. The sta-bility of the complexes followed the order: La3+Gd3+, showing a break at gadolinium. The thermodynamic parame-ters, ΔG, ΔH and ΔS associated with protonation and complexation reactions were negative which suggested that all reactions were exother-mic and enthalpy-driven. Isothermal calorimetric studies of Gd3+-aeINH systems at 303 K also showed exothermic nature of the complexation reaction and formation of 1:1 complex in agreement with the pH-metric data. Formation of 1:1 complexes was confirmed by the characteriza-tion of Nd(Ⅲ) complex. A seven coordinated geometry was assigned for the complex based on its elemental and spectral data.  相似文献   

8.
Unusual intense infrared-to-ultraviolet upconversion luminescence was observed in YF3:Yb3+(20%)/Tm3+(1%) nanocrystals under 980 nm excitation. The intense ultraviolet emissions (1I6→3H6, 1I6→3F4, and 1D2→3H6) were affirmed arising from the excitation processes of five-photon and four-photon. In comparison with the bulk sample with the same chemical compositions, ultraviolet upconversion lumi-nescence of the nanocrystals was markedly enhanced. Spectral analysis indicated that the enhancement was attributed to the decrease of Judd-Ofelt parameter Ω2, which precluded the transition rate from 3F2 to 3F4, enhanced the energy transfer process and populated the 1D2 level: 3F2→3H6 (Tm3+): 3H4→1D2 (Tm3+).  相似文献   

9.
The phosphate glass doped with Gd3+,Tb3+ and Gd3+/Tb3+ were prepared by high temperature melting.The photo-luminescence behavior of Gd3+ and Tb3+ in phosphate glass were investigated by absorption,excitation,and emission spectroscopy.Energy transfer between Gd3+ and Tb3+ in phosphate glass was studied,and it was found that there were two energy transfer mechanisms between Gd3+ and Tb3+ in phosphate glass: one was from 4f7 level of Gd3+ to the 4f8 level of Tb3+,and the other was from 5d level of Tb3+ to 4f7 level of Gd3+.The new findings would be beneficial for the study of Tb3+-doped scintillating phosphate glass.  相似文献   

10.
Eu3+ and Ho3+ doped Sr2TiO4 were synthesized by using solid-state reactions. Samples sintered at 1300 oC for 6 h could be indexed to Sr2TiO4 with a single phase. Eu3+ in Sr2TiO4 emitted orange light under the excitation at 365 nm in a broad band which was coupled well with the strongest emission of high pressure mercury vapor lamps. Ho3+ in Sr2TiO4 emitted yellow light under blue excitation from 450 to 460 nm which agreed well with the emission of blue InGaN-based light-emitting diodes. The present results indicated that Sr2TiO4 was a promising host for high pressure mercury vapor lamps or white light-emitting diodes.  相似文献   

11.
A series of Eu~(2+),Tb~(3+)-codoped Sr_3 Y(PO_4)_3(SYP) green phosphors were synthesized by hightemperature solid-state reaction. Several techniques, such as X-ray diffraction, UV-vis spectrum,and photoluminescence spectrum, were used to investigate the obtained phosphors. The present study investigates in detail photoluminescence excitation and emission properties, energy transfer between the two dopants, and effects of doping ions on optical band gap. SYP:0.05 Eu2+ phosphor shows an intense and broad excitation band ranging from 220 to 400 nm and exhibits a bright green emission band with CIE chromaticity coordinates(0.189, 0.359) under 350 nm excitation. Green emission of SYP:0.03 Tb3+ is intensified by codoping with Eu~(2+), and energy transfer mechanism between them is demonstrated to be a dipole-dipole interaction. Upon 350 nm excitation, SYP:Eu~(2+),Tb~(3+) phosphors exhibits two dominating bands peaking at 466 and 545 nm, which are assigned to 4 f~65 d~1→4 f~7 transition of Eu~(2+) ions and ~5 D_4→~7 F_5 transition of Tb~(3+) ions, respectively. Optimal doping concentrations of Eu~(2+) and Tb~(3+) in the SYP host are 5 mol% and 15 mol%, respectively. Results indicate that SYP:Eu~(2+),Tb~(3+) phosphors are potentially used as green-emitting phosphors for white light-emitting diodes.  相似文献   

12.
Rare earth ions doped gadolinium oxybromide phosphors GdOBr:RE3+ (RE=Eu, Tb, Ce) were synthesized by the method of solid-state reaction at high temperature, and the VUV-VIS spectroscopic properties of the phosphors were systematically investigated. Under the excitation of VUV or UV source, the phosphors doped with Eu3+ and Tb3+ show a bright and sharp emission at around 620 nm corresponding to the forced electric dipole 5D07F2 transition of Eu3+, and at around 544 nm corresponding to the 5D47F5 transition of Tb3+, respectively. For GdOBr:Ce3+, a broader and intense emission spanned 370–500 nm corresponding to the d-f transition of Ce3+ was observed. The excitation spectra were also analyzed.  相似文献   

13.
CaWO4:xEu3+,yTm3+crystals were obtained by facile synthesis at low temperature by the microwaveassisted hydrothermal method(MAH).The phase formation,morphology,luminescent properties and ene rgy transfer were investigated.The X-ray diffraction(XRD)re sults show the formation of a scheelitelike tetragonal structure without the presence of secondary phases.The growth mechanism of hierarchical micro structures based on self-assembly and Ostwald-ripening processes was evaluated,obtaining different types of morphologies.The luminescence spectra of CaWO4:Eu3+,Tm3+at 325 nm excitation show the predominance of red emission at the 5 D0→7 F2(Eu3+)transition at 624 nm.This feature signals dominant behavior of the electric dipole type.The presence of Tm3+is notably evident in the absorption spectra by the related excitation transitions:3 H6→1 G4,3 H6→3 F3 and 3 H6→3 H4.Color parameters are discussed to characterize CaWO4:Eu3+,Tm3+emission.The study of the emission spectrum as a function of the concentration of Eu3+(x mol%)and Tm3+(y mol%)indicates that the CaWO4:Eu3+,Tm3+phosphors show stronger red emission intensity and exhibit the CIE value of x=0.63 and y=0.35.The photoluminescence results show 97%high color purity for CaWO4:4 mol%Eu3+,a high CRI(92%)and a low CCT of 1085 K.These results demonstrate that the CaWO4:Eu3+,Tm3+red phosphors are promising as color converters for application in white light-emitting diodes and display devices.  相似文献   

14.
Rare earth borogermanates as a group of stable compounds provided various potential properties important for modern sciences. Among the properties of interests, luminescence was manifested due to the variability of rare earth elements and the compounds constituted an important group of potential candidate. In this work, novel phosphors of Eu3+, Tb3+ or Tm3+ doped LaBGeO5 with the stillwellite type structure were synthesized by the solid state reaction method. Their X-ray and UV excitation luminescent proper...  相似文献   

15.
A single-phase full-color emitting phosphor Sr2Ca2La(PO4)3O:Eu2+,Tb3+,Mn2+ was synthesized by the high temperature solid-state method. The phase formation, luminescence properties, thermal stability, and energy transfer from Eu2+ to Tb3+ and Eu2+ to Mn2+ in Sr2Ca2La(PO4)3O were investigated in details. Tunable emission color from blue to blueish green or orange can be observed under 365 nm near-ultraviolet excitation based on the energy transfer from Eu2+ to Tb3+ or Mn2+ ions by varying the ratio of Eu2+/Tb3+ or Eu2+/Mn2+ ions. White light was obtained with chromaticity coordinates of (0.3558, 0.3500) in the Sr2Ca2La(PO4)3O:0.04Eu2+,0.08Tb3+,0.40Mn2+ phosphor, suggesting their potential applications in white light emitting diodes.  相似文献   

16.
In this paper, the Gd2O3:Eu3+,Tb3+phosphors with different doping concentrations of Eu3+and Tb3+ions were prepared by a hydrothermal method for nanocrystals and the solid-phase method for microcrystals. The interaction of the doped ions with different concentrations and the luminescent properties of the nanocrystals and microcrystals were studied systematically. Their structure and morphology of Gd2O3:Eu3+,Tb3+phosphors were analyzed by means of X-ray powder diffraction (XRD), transmission electron mi-croscopy (TEM) and scanning electron microscopy (SEM). The photoluminescence (PL) properties of Gd2O3:Eu3+,Tb3+phosphors were also systematically investigated. The results indicated that when the concentration of doped Eu3+was fixed at 1 mol.%, the emis-sion intensity of Eu3+ions was degenerating with Tb3+content increasing, while when the Tb3+content was fixed at 1 mol.%, the emission intensity of Tb3+ions reached a maximum when the concentration of Eu3+was 2 mol.%, implying that the energy transfer from Eu3+to Tb3+took place. In addition, Tb3+could inspire blue-green light and the Eu3+could inspire red light. Therefore co-doping systems by controlling the doping concentration and the hosts are the potential white emission materials.  相似文献   

17.
We reported magnetooptical properties of Eu3+(4f(6)) and Tb3+(4f(8)) in single crystals of Gd3Ga5O12 (GGG), Y3Ga5O12 (YGG), and Eu3+(4f(6)) in Eu3Ga5O12 (EuGG) for both ions occupying sites of D2 symmetry in the garnet structure. Absorption, luminescence, and magnetic circular polarization of luminescence (MCPL) spectra of Tb3+ in GGG and YGG and absorption and magnetic circular dichroism (MCD) of Eu3+ in EuGG were studied. The data were obtained at 85 K and room temperature (RT). Magnetic susceptibility of Eu3+ in EuGG was also measured between 85 K and RT. The magnetooptical and magnetic susceptibility data were modeled using the wavefunctions of the crystal-field split energy (Stark) levels of Eu3+ and Tb3+ occupying D2 sites in the same garnets. The results reported gave a precise determination of these Stark level assignments and confirmed the symmetry labels (irreducible representations) of the closely-spaced Stark levels (quasi-doublets) found in the 5D1 (Eu3+) and 5D4 (Tb3+) multiplets. Ultraviolet (UV) excitation (<300 nm) of the 6PJ and 6IJ states of Gd3+ in the doped GGG crystals led to emission from 5D4 (Tb3+) and 5D1 and 5D0 (Eu3+) through radiationless energy transfer to the 4f(n-1)5d band of Tb3+ and to UV quintet states of Eu3+. The temperature-dependent emission line shapes and line shifts of the magnetooptical transitions excited by UV radiation suggested a novel way to explore energy transfer mechanisms in this rare-earth doped garnet system.  相似文献   

18.
Zirconium metal–organic frameworks ZrOBDC (where BDC = C6H4(COOH)2, terephthalic acid) doped and co-doped with rare earth ions Ln (ZrOBDC:Ln3+, where Ln3+ = Eu3+ and Tb3+ as well as Er3+ and Yb3+) were used as precursors for the design of tetragonal rare earth doped zirconia nanoparticles (t-ZrO2:Ln3+ NPs) through annealing process. Preparation, characterization and luminescence properties of ZrOBDC:Ln3+ and ZrO2:Ln3+ NPs were investigated. The as-obtained t-ZrO2:Ln3+ NPs have high purity with an average size of 20–30 nm. The luminescence spectra of ZrOBDC:Tb3+ and ZrOBDC:Eu3+ display strong green and red emission at around 544 and 611 nm which correspond to 5D4 → 7F5 and 5D0 → 7F2 transitions of Tb3+ and Eu3+ ions, respectively. The green and red up-conversion emissions of ZrO2:Er3+,Yb3+ NPs due to 2H11/2, 4S3/2 → 4I15/2 and 4F9/2 → 4I15/2 transitions of the Er3+ ions are observed under 976 nm laser excitation.  相似文献   

19.
For the purpose of development of highly energy-efficient light sources, one needs to design highly efficient green, red and yellow phosphors, which are able to absorb excitation energy and generate emissions. In this contribution, we present our results on producing some efficient phosphors with improved luminescence properties. Using double activation, energy could be transferred from one luminescent activator to the other one, resulting in more efficient or brighter device operation. Co-activators could be added to a host material to change the color of the emitted light. The incorporation of Eu3+ or Tb3+ ions into the CaWO4 crystal lattice modified the luminescence spectrum due to the formation of the emission centers that generated the specific red and green light. Very efficient new red phosphors based on YNbO4 and doped by Eu3+, Ga3+, Al3+ allowed recommending these materials as good candidates for different applications including LED and X-ray intensifying screens. For double activated TAG with Ce3+ and Eu3+ and for different mole ratios of Ce/Eu, the color temperature changed from 5500 K (0.331, 0.322) up to 4200 K (0.370, 0.381) and the light became “warmer”. Application of TAG: Ce, Eu in the light emitting device showed better chromaticity coordinates of luminescence and color rendering index of LEDs.  相似文献   

20.
In this work,calcium niobium gallium garnet(Ca3 Nb1.6875Ga3.1875O12-CNGG) ceramic samples singledoped with Tb3+ and co-doped with Tb3+ and Yb3+ ions were sintered by the solid-state reaction method.The structural characterization of the samples was carried out by X-ray diffraction measurements.The optimal concentration of Tb3+ ions corresponding to the maximum luminescence in the green spectral range in CNGG:...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号