首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The photon energy response of different RADOS (Mirion Technologies) personal dosemeters with MTS-N (LiF:Mg,Ti) and MCP-N (LiF:Mg,Cu,P) thermoluminescence (TL) detectors was investigated. Three types of badges were applied. The irradiation with reference photon radiation qualities N (the narrow spectrum series), and S-Cs and S-Co nuclide radiation qualities, specified in ISO 4037 [International Organization for Standardization (ISO). X and gamma reference radiations for calibrating dosemeters and doserate meters and for determining their response as a function of photon energy. ISO 4037. Part 1-4 (1999)], in the energy range of 16-1250 keV, were performed at the Dosimetry Laboratory Seibersdorf. The results demonstrated that a readout of a single MTS-N or MCP-N detector under the Al filter can be used to determine Hp(10) according to requirements of IEC 61066 [International Electrotechnical Commission (IEC). Thermoluminescence dosimetry systems for personal and environmental monitoring. International Standard IEC 61066 (2006)] for TL systems for personal dosimetry. The new RADOS badge with the experimental type of a holder (i.e. Cu/Al filters) is a very good tool for identifying the radiation quality (photon energy).  相似文献   

2.
Differences and similarities between LiF-based LiF:Mg,Ti and LiF:Mg,Cu,P are discussed, with respect to their dosimetric properties--sensitivity, non-linearity of dose response and heavy charged particle efficiency, as related to the concentration and the individual role of the Mg, Ti, Cu and P dopants. To study further the role of these dopants, the properties of some new, 'hybrid' phosphors: LiF:Mg,Cu,Ti and LiF:Mg,P, specially developed for this purpose, are also discussed. In the glow curve of LiF:Mg,Cu,P with a low concentration of Mg a new peak was found, which appears to be an analogue of peak 4 in LiF:Mg,Ti, Magnesium apparently controls most of the dosimetric properties of LiF-based phosphors. For instance, charged-particle efficiency appears to be anti-correlated with the concentration of Mg, being much less dependent on the content of other dopants. On the other hand, some properties of LiF-based systems seem to be correlated with changes in the emission spectra. It is suggested that Ti hampers the acceptance of any increased amount of Mg into more traps in LiF:MgTi. The absence of Ti, not the presence of P or Cu, is therefore a key to the high sensitivity of LiF:MgCuP.  相似文献   

3.
The extended track interaction model (ETIM) has been formulated to explain the TL-fluence response for peak 5 to heavy ions using radial dose distributions produced by the ions in LiF and their luminescent centre occupation probability distributions. In this work, an experimental study of the TLD-100 fluence response to carbon and oxygen ions and its interpretation in terms of a Monte Carlo simulation of ETIM applied to peak 5 are presented. Irradiations were performed with 7.34 and 10.3 MeV 12C and 8.34 MeV 16O ions in the fluence interval between 2 x 10(7) and 2 x 10(11) cm(-2). Individual glow curve responses show the expected increase of supralinearity as the peak temperature increases. Data for peak 5 show a weak dependence with energy. These latter results are difficult to understand when one considers the differences in the expected radial occupancies for different ion energies.  相似文献   

4.
5.
6.
In this paper, the various models dealing with the effects of ionisation density on the thermoluminescence (TL) response (efficiency) of TL LiF dosemeters are discussed. These include (i) the Unified Interaction Model (UNIM), which models photon/electron linear/supralinear dose response; (ii) the Extended Track Interaction Model (ETIM), which models heavy charged particle (HCP) TL fluence response; (iii) Modified Track Structure Theory (MTST), which models relative HCP TL efficiencies; and (iv) Microdosimetric Target Theory (MTT), which models both relative HCP efficiencies and photon energy response.  相似文献   

7.
Evaluation of a new extremity dosemeter is presented. The dosemeter is a passive device that is easy to wear and features a permanent individual numerical ID with barcode, a watertight case, an automatic TLD reader and database management software. Two dosemeters were studied: the first consists of a 100 mg x cm(-2) 7LiF:Mg,Ti (TLD-700) chip and a 42 mg x cm(-2) cap, the other consists of a 7 mg x cm(-2) layer of 7LiF:Mg,Cu,P (TLD-700H) powder and a 5 mg x cm(-2) cap. Sensitivity, repeatability, lower limit detection, angular responses and energy responses for these dosemeters are studied and presented. The dose calculation algorithm is developed and its dosimetric performance accuracy is compared with the standard ANSI N13.32-1995, Performance Testing of Extremity Dosemeters.  相似文献   

8.
The effects of UV-induced bleaching of deep traps on Harshaw thermoluminescent (TL) LiF:Mg,Cu,P and LiF:Mg,Ti materials were investigated. During a normal heating cycle, LiF:Mg,Cu,P is limited to a maximum temperature of 240 °C. LiF:Mg,Ti can be read to higher temperatures; however, encapsulation in polytetrafluoroethylene limits the maximum readout temperature to 300 °C. Generally, for both materials, these respective temperatures are sufficient for emptying traps corresponding to the main dosemetric peaks. However, when the dosemeters are subjected to a high dose level, such as 1 Gy (much higher than individual monitoring dose levels), higher temperature traps are filled that cannot be emptied without exceeding the above-mentioned maximum temperatures. These high temperature traps tend to be unstable during normal readout and can significantly increase the residual TL signal. The purpose of this study was to investigate the applicability of a UV-induced bleaching technique for emptying higher temperature traps following high-dose applications. In addition, in the case of LiF:Mg,Cu,P, where the maximum readout temperature is significantly lower, we investigated the possibility of reducing the residual signal using the application of repeated readout cycles. The optical bleaching approach was found to be effective in the case of LiF:Mg,Ti; however, for LiF:Mg,Cu,P, no reduction in the residual signal was observed. For this latter material, the application of repeatable readout cycles is very effective and residual signals equivalent to dose levels as low as 0.01 mGy were observed following an initial dose of 5 Gy. To the best of our knowledge, this work is the first attempt to apply an 'optical annealing' technique to the Harshaw thermoluminescent dosemeter (TLD) materials.  相似文献   

9.
In this paper, the results aimed at assessing the performance of two varieties of LiF detectors (LiF:Mg,Ti and LiF:Mg,Cu,P) in photon fields relatively to reproducibility, detection threshold and angular dependence as defined in the ISO 12794 standard are presented. The fading properties and the limit of detection were also investigated for both materials. The results suggest that both LiF varieties are well suited for extremity monitoring. However, better fading properties of LiF:Mg,Cu,P when compared with LiF:Mg,Ti, combined with previous results relatively to energy dependence suggests that LiF:Mg,Cu,P dosemeters are better suited for extremity monitoring.  相似文献   

10.
The response of thermoluminescence dosemeters (TLDs) to light, in various conditions, has been studied. TLD cards containing both conventional lithium fluoride (LiF:Mg,Ti) and the high-sensitivity material LiF:Mg,Cu,P were available, so permitting a comparison between the two types. Also available for the tests were Harshaw(TM) extremity EXT-RAD (LiF:Mg,Cu,P) dosemeters. The LiF:Mg,Ti body TLD cards and the EXT-RAD extremity dosemeters both showed some response to fluorescent light, while the LiF:Mg,Cu,P cards showed no significant response. It is therefore concluded that LiF:Mg,Cu,P body cards need no special precautions to protect them from the effects of light. For LiF:Mg,Ti cards and extremity dosemeters, effects are small, but steps to avoid excessive light exposure should be considered.  相似文献   

11.
12.
The simulation of response of a new passive area dosemeter for measuring ambient dose equivalent H*(10) for photons has been performed using the Monte Carlo code MCNP and experimentally determined responses of LiF:Mg,Ti and LiF:Mg,Cu,P thermoluminescent (TL) detectors for hard-filtered X-ray spectra from 20 to 300 keV and for 137Cs and 60Co gamma radiation. Relative TL efficiency for both types of detectors, determined in experiments with bare detectors and similar Monte Carlo simulations, compared favourably with prediction of microdosimetric models for proposed microdosimetric target sizes in the range of 20-40 nm. The concluding verification experiment showed small deviations between measured and simulated dosemeter energy response values in the range of a few percent.  相似文献   

13.
The uncertainty in very low doses measured with TLDs is partly caused by the uncertainty in the zero signal of the detector. A mathematical model for the thermodynamics of TLD heating and the zero signal in a hot gas reader with constant gas temperature is presented. The major component of the heating is described as diffusion limited conductive heating, the major component of the zero signal is black body radiation from the hot TLD. The parameters in the model were determined from the glow curves recorded at five different gas temperatures. The model explains the shape and statistics of a zero signal glow curve and can be used in the quality control of non-irradiated TLDs before calibration irradiation and readout.  相似文献   

14.
There are two widely applied types of thermoluminescent detectors based on LiF:Mg luminophor: Lif:Mg,Ti and highly sensitive LiF:Mg,Cu,P. The role of luminescence centres in these materials is usually attributed to defects connected with, respectively, titanium and phosphorus dopants. In order to check how composition of dopants introduced into the LiF lattice influences emission spectra, measurements on a series of variously doped LiF:Mg samples were performed. Apart from LiF:Mg,Cu,P and LiF:Mg,Ti detectors with different concentration of activators, an experimental sample being a kind of a 'hybrid' between both standard materials was also prepared. It was synthesised with concentrations of magnesium and copper identical to those used for LiF:Mg,Cu,P preparation. but instead of phosphorus it was doped with titanium (LiF:Mg,Cu,Ti). The measurements of the emission spectra were performed by using a liquid nitrogen cooled CCD 1024E detector with an SP150 spectrograph. During the measurements the samples were placed inside a cryostat in a vacuum. Resulting data were numerically deconvoluted for individual peaks with respect to the wavelength and the temperature. The glow curve shape of this material resembles that of LiF:Mg,Cu,P, while sensitivity is at the level of LiF:Mg,Ti. Preliminary results indicate that emission of the LiF:Mg,Cu,Ti sample is similar to that of LiF:Mg,Cu,P rather than to LiF:Mg,Ti, showing a maximum for wavelengths well below 400 nm.  相似文献   

15.
LiF:Mg,Cu,P 'pin worms': miniature detectors for brachytherapy dosimetry   总被引:5,自引:0,他引:5  
Dose measurements in brachytherapy 192Ir implants are often difficult due to large dose gradients and complex photon spectra. Therefore, tissue-equivalent detectors with a high spatial resolution, such as the highly promising LiF:Mg,Cu,P thermoluminescent detectors (TLDs) are required. It was the aim of the present work to ascertain if miniature LiF:Mg,Cu,P TLDs can effectively measure the dose distribution around 192Ir implants. 'Pin worm' TLDs (type MCP, diameter 0.6 mm, length 2 mm) were compared with GR-200R (SSDL, Beijing) rods cut in half. The TLDs were tested for reproducibility and energy dependence using high dose rate (HDR) and low dose rate (LDR) brachytherapy units. 192Ir measurements were performed in a tissue equivalent phantom accommodating hollow needles and catheters routinely used in brachytherapy. Pin worms had an average reproducibility of less than +/-2% (1 SD) and a detection limit of less than 10 microGy. The small dimensions of the pin worms allowed their placement within brachytherapy needles and catheters. The measured relative dose distribution was in good agreement with the predictions of a computerised treatment planning system (ADAC Pinnacle); however, limitations in the TLD energy correction did not allow for absolute dose comparison.  相似文献   

16.
The personal dosimetry service of the UK Health Protection Agency-formerly of the National Radiological Protection Board (NRPB)-is currently commissioning a body thermoluminescence dosemeter (TLD) system based on the use of Harshaw(TM) 8800 readers and two-element cards. As part of the process, studies have been carried out into the long-term time dependence of response, the limit of detection and the magnitude of the signal remaining after recommended processing. TLD cards containing both conventional lithium fluoride (LiF:Mg,Ti) and the high-sensitivity material LiF:Mg,Cu,P were available, thus allowing a comparison between the two types of material.  相似文献   

17.
LiF is a well-known thermoluminescent (TL) material used in individual monitoring, and its fading characteristics have been studied for years. In the present study, the fading characteristics (for a period of 150 d) of various commercial LiF materials with different dopants have been evaluated. The materials used in the study are those used in routine procedures by the Personal Dosimetry Department of Greek Atomic Energy Commission and in particular, LiF:Mg,Ti (MTS-N, TL Poland), LiF:Mg,Cu,P (MCP-N, TL Poland), LiF:Mg,Cu,P (MCP-Ns, thin active layer detector, TL Poland) and LiF:Mg,Cu,P (TLD100H, Harshaw). The study showed that there is a sensitivity loss in signal of up to 20 % for the MTS-N material for a 150-d period in the pre-irradiation fading phase. The MCP-N has a stable behaviour in the pre-irradiation fading phase, but this also depends on the readout system. As far as the post-irradiation fading effect is concerned, a decrease of up to 20 % for the MTS-N material is observed for the same time period. On the other hand, the LiF:Mg,Cu,P material presents a stable behaviour within ± 5 %. These results show that the fading effect is different for each material and should be taken into account when estimating doses from dosemeters that are in use for >2 months.  相似文献   

18.
19.
The optical absorption (OA) and thermoluminescence (TL) of dosimetric LiF:Mg,Ti (TLD-100) as well as nominally pure LiF single crystal have been studied as a function of irradiation dose, thermal and optical bleaching in order to investigate the role of the 4.45 eV OA band in low temperature TL. Computerised deconvolution was used to resolve the absorption spectrum into individual gaussian bands and the TL glow curve into glow peaks. Although the 4.45 eV OA band shows thermal decay characteristics similar to the 4.0 eV band its dose filling constant and optical bleaching properties suggest that it cannot be associated with the TL of composite peaks 4 or 5. Its presence in optical grade single crystal LiF further suggests that it is an intrinsic defect or possibly associated with chance impurities other than Mg, Ti.  相似文献   

20.
It is demonstrated experimentally that optical excitation of irradiated LiF:Mg,Ti (TLD-100) by 4 eV photons has the same effect for both alpha particle (high-ionisation density) irradiation and photon/electron irradiation. In both cases, peak 5a converts to peak 4 causing peak 4 to increase following the bleach. Such an observation is consistent with the major premise of track structure theory that radiation effects following heavy changed particle (HCP)/neutron irradiation are due exclusively to the interaction of the secondary electrons created by the HCP slowing down.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号