首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
研究了90nm工艺条件下的轻掺杂漏(lightly-doped drain,LDD)nMOSFET器件最大衬底电流应力特性.在比较分析了连续不同电应力后LDD nMOSFET的GIDL(gate-induced drain leakage)电流变化后,发现当器件的栅氧厚度接近1nm,沟长接近100nm时,最大衬底电流应力不是电子注入应力,也不是电子和空穴的共同注入应力,而是一种空穴注入应力,并采用空穴应力注入实验、负最大衬底电流应力实验验证了这一结论.  相似文献   

2.
通过对采用0.18μm CMOS工艺制造的两组不同沟道长度和栅氧厚度的LDD器件电应力退化实验发现,短沟薄栅氧LDD nMOSFET(Lg=0.18μm,Tox=3.2nm)在沟道热载流子(CHC)应力下的器件寿命比在漏雪崩热载流子(DAHC)应力下的器件寿命要短,这与通常认为的DAHC应力(最大衬底电流应力)下器件退化最严重的理论不一致.因此,这种热载流子应力导致的器件退化机理不能用幸运电子模型(LEM)的框架理论来解释.认为这种"非幸运电子模型效应"是由于最大碰撞电离区附近具有高能量的沟道热电子,在Si-SiO2界面产生界面陷阱(界面态)的区域,由Si-SiO2界面的栅和漏的重叠区移至沟道与LDD区的交界处以及更趋于沟道界面的运动引起的.  相似文献   

3.
研究了LDD nMOSFET栅控产生电流在电子和空穴交替应力下的退化特性。电子应力后栅控产生电流减小,相继的空穴注人中和之前的陷落电子而使得产生电流曲线基本恢复到初始状态。进一步发现产生电流峰值在空穴应力对电子应力引发的退化的恢复程度与阈值电压和最大饱和漏电流不同。电子应力中陷落电子位于栅漏交叠区附近的沟道侧I区和LDD侧的II区中氧化层中。GIDL应力中,空穴注入进II区中和了陷落电子,使得产生电流的退化基本得到恢复,但这些空穴并未有效中和I区中的陷落电子,因此阈值电压和最大饱和漏电流退化恢复的程度较小,分别为20%和7%。  相似文献   

4.
杨林安  于春利  郝跃 《半导体学报》2005,26(7):1390-1395
通过对采用0.18μm CMOS工艺制造的两组不同沟道长度和栅氧厚度的LDD器件电应力退化实验发现,短沟薄栅氧LDD nMOSFET(Lg=0.18μm,Tox=3.2nm)在沟道热载流子(CHC)应力下的器件寿命比在漏雪崩热载流子(DAHC)应力下的器件寿命要短,这与通常认为的DAHC应力(最大衬底电流应力)下器件退化最严重的理论不一致.因此,这种热载流子应力导致的器件退化机理不能用幸运电子模型(LEM)的框架理论来解释.认为这种“非幸运电子模型效应”是由于最大碰撞电离区附近具有高能量的沟道热电子,在Si-SiO2界面产生界面陷阱(界面态)的区域,由Si-SiO2界面的栅和漏的重叠区移至沟道与LDD区的交界处以及更趋于沟道界面的运动引起的.  相似文献   

5.
基于0.18 μm高压n型DEMOS(drain extended MOS)器件,报道了在衬底电流,Isub两种极值条件下作高压器件的热载流子应力实验,结果发现器件电学性能参数(如线性区电流、开态电阻、最大电导和饱和漏电流)随应力时间有着明显退化.通过TCAD分析表明,这主要是由于持续电压负载引起器件内部界面态的变化和电子注入场氧层,进而改变了器件不同区域内部电场分布所致.同时模拟研究还表明,在,Isub第一极大值条件下应力所致的器件退化,主要是由器件漏/沟道耗尽区域的电场强度增加引起的;而在Isub第二极值条件下的应力诱发器件退化,则主要是由漏端欧姆接触附近的电场加强所致.  相似文献   

6.
基于40 nm CMOS工艺,研究了8 V MV NMOS器件的HCI-GIDL效应的优化。分析了增大LDD注入倾角、二次LDD注入由P注入变为As注入两种措施对电学特性的影响。测试结果表明,两种措施均对器件的衬底电流、关态泄漏电流产生较好效果。利用TCAD工具,模拟了LDD注入工艺的优化对掺杂形貌、电场分布和碰撞电离强度的影响。分析了HCI-GIDL效应得以优化的物理机制。  相似文献   

7.
研究了超薄栅(2 .5 nm )短沟HAL O- p MOSFETs在Vg=Vd/ 2应力模式下不同应力电压时热载流子退化特性.随着应力电压的变化,器件的退化特性也发生了改变.在加速应力下寿命外推方法会导致过高地估计器件寿命.在高场应力下器件退化是由空穴注入或者电子与空穴复合引起的,随着应力电压的下降器件退化主要是由电子注入引起的.最后,给出了两种退化机制的临界电压并在实验中得到验证  相似文献   

8.
研究了超薄栅(2.5nm)短沟HALO-pMOSFETs在Vg=Vd/2应力模式下不同应力电压时热载流子退化特性.随着应力电压的变化,器件的退化特性也发生了改变.在加速应力下寿命外推方法会导致过高地估计器件寿命.在高场应力下器件退化是由空穴注入或者电子与空穴复合引起的,随着应力电压的下降器件退化主要是由电子注入引起的.最后,给出了两种退化机制的临界电压并在实验中得到验证.  相似文献   

9.
为了研究不同的空穴注入层修饰柔性衬底对柔性OLED器件性能的影响,本文采用HAT-CN、PEDOT∶PSS、PEDOT∶PSS/HAT-CN 3种空穴注入层制备柔性OLED器件。设计的器件结构为PET/ITO/HIL/TAPC (60nm)/CBP∶Ir(ppy)3(20nm,10%)/TmPyPB(45nm)/Liq(2nm)/Al(100nm)。采用旋涂的方法制备了PEDOT∶PSS,其余有机层及阴极采用真空蒸镀法制备。结果表明,采用PEDOT∶PSS/HAT-CN复合薄膜作为空穴注入层的柔性OLED器件性能最优。该器件的最大电流效率和最大功率效率分别为84cd/A和76lm/W。研究表明,经PEDOT∶PSS修饰的柔性衬底表面更为连续及平滑,不容易使器件发生漏电及短路现象;同时PET/ITO/PEDOT∶PSS/HATCN复合薄膜在绿光波段有较高的透过率,可以提高器件的出光率;另外该双空穴注入结构使器件内部载流子的注入处于动态平衡状态,增加了电子和空穴载流子的复合概率。  相似文献   

10.
研究了在恒压应力下超薄栅nMOSFET软击穿后的衬底电流特性.软击穿时间由衬底电流随时间的弛豫特性和器件输出特性测量时监测的衬底电流突变确定.发现软击穿时间的威布尔斜率和衬底特征击穿电流随温度的升高而增大.用类渗流模型模拟了软击穿后衬底电流与栅电压的关系.利用变频光泵效应讨论了超薄栅MOSFET低电压应力下衬底电流的来源,并解释了软击穿后衬底电流和栅电流之间的线性关系.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号