首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
杨林安  于春利  郝跃 《半导体学报》2005,26(7):1390-1395
通过对采用0.18μm CMOS工艺制造的两组不同沟道长度和栅氧厚度的LDD器件电应力退化实验发现,短沟薄栅氧LDD nMOSFET(Lg=0.18μm,Tox=3.2nm)在沟道热载流子(CHC)应力下的器件寿命比在漏雪崩热载流子(DAHC)应力下的器件寿命要短,这与通常认为的DAHC应力(最大衬底电流应力)下器件退化最严重的理论不一致.因此,这种热载流子应力导致的器件退化机理不能用幸运电子模型(LEM)的框架理论来解释.认为这种“非幸运电子模型效应”是由于最大碰撞电离区附近具有高能量的沟道热电子,在Si-SiO2界面产生界面陷阱(界面态)的区域,由Si-SiO2界面的栅和漏的重叠区移至沟道与LDD区的交界处以及更趋于沟道界面的运动引起的.  相似文献   

2.
本文详细研究了不同栅压应力下1.8V pMOS器件的热载流子退化机理.研究结果表明,随着栅压应力增加,电子注入机制逐渐转化为空穴注入机制,使得pMOS漏极饱和电流(Idsat)、漏极线性电流(Idlin)及阈值电压(Vth)等性能参数退化量逐渐增加,但在Vgs=90%*Vds时,因为没有载流子注入栅氧层,使得退化趋势出现转折.此外,研究还发现,界面态位于耗尽区时对空穴迁移率的影响小于其位于非耗尽区时的影响,致使正向Idsat退化小于反向Idsat退化,然而,正反向Idlin退化却相同,这是因为Idlin状态下器件整个沟道区均处于非耗尽状态.  相似文献   

3.
提出了一种新的基于电荷泵技术和直流电流法的改进方法,用于提取LDD n-MOSFET沟道区与漏区的界面陷阱产生.这种方法对于初始样品以及热载流子应力退化后的样品都适用.采用这种方法可以准确地确定界面陷阱在沟道区与漏区的产生,从而有利于更深入地研究LDD结构器件的退化机制.  相似文献   

4.
基于中国科学院微电子研究所开发的0.35 μm SOI工艺,制备了深亚微米抗辐照PDSOI H型栅nMOSFET.选取不同沟道宽度进行加速应力实验.实验结果表明,热载流子效应使最大跨导变化最大,饱和电流变化最小,阈值电压变化居中.以饱和电流退化10%为失效判据,采用衬底/漏极电流比率模型,对器件热载流子寿命进行估计,发现同等沟道长度下,沟道越宽的器件,载流子寿命越短.  相似文献   

5.
通过测量界面陷阱的产生,研究了超薄栅nMOS和pMOS器件在热载流子应力下的应力感应漏电流(SILC).在实验结果的基础上,发现对于不同器件类型(n沟和p沟)、不同沟道长度(1、0.5、0.275和0.135μm)、不同栅氧化层厚度(4和2.5nm),热载流子应力后的SILC产生和界面陷阱产生之间均存在线性关系.这些实验证据表明MOS器件减薄后,SILC的产生与界面陷阱关系非常密切.  相似文献   

6.
提出了一种新的基于电荷泵技术和直流电流法的改进方法,用于提取LDDn MOSFET沟道区与漏区的界面陷阱产生.这种方法对于初始样品以及热载流子应力退化后的样品都适用.采用这种方法可以准确地确定界面陷阱在沟道区与漏区的产生,从而有利于更深入地研究LDD结构器件的退化机制.  相似文献   

7.
基于Tsuprem4和Medici模拟软件,研究了LDD结构对多晶硅薄膜晶体管热载流子退化的影响.计算结果表明当栅氧层厚度tox=0.07 μm时,碰撞离化产生率和热电子注入电流峰值将达到最大,扩展区掺杂浓度增加,使沟道中横向电场和碰撞离化产生率的峰值分布区域向着栅电极的方向移动,即在应力作用下,热载流子退化的区域向着栅电极的方向漂移.  相似文献   

8.
热载流子效应引起的器件电学特性退化会严重影响电路的工作性能。文章结合多晶硅薄膜晶体管沟道电流的理论模型,讨论了热载流子效应与界面陷阱的关系。沟道载流子在大的漏电场牵引下,运动到漏结附近获得很大的能量从而成为热载流子。如果热载流子能量超过Si-SiO2界面势垒高度,会注入到栅氧层或陷落到界面陷阱,使阈值电压和沟道电流发生退化现象。同时,对多晶硅薄膜晶体管输出特性进行了模拟分析,模拟结果与理论模型基本一致。  相似文献   

9.
基于0.18 μm高压n型DEMOS(drain extended MOS)器件,报道了在衬底电流,Isub两种极值条件下作高压器件的热载流子应力实验,结果发现器件电学性能参数(如线性区电流、开态电阻、最大电导和饱和漏电流)随应力时间有着明显退化.通过TCAD分析表明,这主要是由于持续电压负载引起器件内部界面态的变化和电子注入场氧层,进而改变了器件不同区域内部电场分布所致.同时模拟研究还表明,在,Isub第一极大值条件下应力所致的器件退化,主要是由器件漏/沟道耗尽区域的电场强度增加引起的;而在Isub第二极值条件下的应力诱发器件退化,则主要是由漏端欧姆接触附近的电场加强所致.  相似文献   

10.
研究了2.5nm超薄栅短沟pMOSFETs在Vg=Vd/2应力模式下的热载流子退化机制及寿命预测模型.栅电流由四部分组成:直接隧穿电流、沟道热空穴、一次碰撞电离产生的电子注入、二次碰撞电离产生的空穴注入.器件退化主要是由一次碰撞产生的电子和二次碰撞产生的空穴复合引起.假设器件寿命反比于能够越过Si-SiO2界面势垒的二次碰撞产生的二次空穴数目,在此基础上提出了一个新的模型并在实验中得到验证.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号