首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we replace the asymptotic enrichments around the crack tip in the extended finite element method (XFEM) with the semi‐analytical solution obtained by the scaled boundary finite element method (SBFEM). The proposed method does not require special numerical integration technique to compute the stiffness matrix, and it improves the capability of the XFEM to model cracks in homogeneous and/or heterogeneous materials without a priori knowledge of the asymptotic solutions. A Heaviside enrichment is used to represent the jump across the discontinuity surface. We call the method as the extended SBFEM. Numerical results presented for a few benchmark problems in the context of linear elastic fracture mechanics show that the proposed method yields accurate results with improved condition number. A simple code is annexed to compute the terms in the stiffness matrix, which can easily be integrated in any existing FEM/XFEM code. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
The numerical analysis of large numbers of arbitrarily distributed discrete thin fibres embedded in a continuum is a computationally demanding process. In this contribution, we propose an approach based on the partition of unity property of finite element shape functions that can handle discrete thin fibres in a continuum matrix without meshing them. This is made possible by a special enrichment function that represents the action of each individual fibre on the matrix. Our approach allows to model fibre‐reinforced materials considering matrix, fibres and interfaces between matrix and fibres individually, each with its own elastic constitutive law. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
A recent approach to fracture modeling has combined the extended finite element method (XFEM) with cohesive zone models. Most studies have used simplified enrichment functions to represent the strong discontinuity but have lacked an analytical basis to represent the displacement gradients in the vicinity of the cohesive crack. In this study enrichment functions based upon an existing analytical investigation of the cohesive crack problem are proposed. These functions have the potential of representing displacement gradients in the vicinity of the cohesive crack and allow the crack to incrementally advance across each element. Key aspects of the corresponding numerical formulation and enrichment functions are discussed. A parameter study for a simple mode I model problem is presented to evaluate if quasi‐static crack propagation can be accurately followed with the proposed formulation. The effects of mesh refinement and mesh orientation are considered. Propagation of the cohesive zone tip and crack tip, time variation of the cohesive zone length, and crack profiles are examined. The analysis results indicate that the analytically based enrichment functions can accurately track the cohesive crack propagation of a mode I crack independent of mesh orientation. A mixed mode example further demonstrates the potential of the formulation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
This paper is aimed at presenting a simple yet effective procedure to implement a mesh‐independent p‐orthotropic enrichment in the generalized finite element method. The procedure is based on the observation that shape functions used in the GFEM can be constructed from polynomials defined in any co‐ordinate system regardless of the underlying mesh or type of element used. Numerical examples where the solution possesses boundary or internal layers are solved on coarse tetrahedral meshes with isotropic and the proposed p‐orthotropic enrichment. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, the numerical modelling of complete sliding contact and its associated singularity is carried out using the partition of unity finite element method. Sliding interfaces in engineering components lead to crack nucleation and growth in the vicinity of the contact zone. To accurately capture the singular stress field at the contact corner, we use the partition of unity framework to enrich the standard displacement‐based finite element approximation by additional (enriched) functions. These enriched functions are derived from the analytical expression of the asymptotic displacement field in the vicinity of the contact corner. To characterize the intensity of the singularity, a domain integral formulation is adopted to compute the generalized stress intensity factor (GSIF). Numerical results on benchmark problems are presented to demonstrate the improved accuracy and benefits of this technique. We conduct an investigation on issues pertaining to the extent of enrichment, accurate numerical integration of weak‐form integrals and the rate of convergence in energy. The use of partition of unity enrichment leads to accurate estimations of the GSIFs on relatively coarse meshes, which is particularly beneficial for modelling non‐linear sliding contacts. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
This work addresses computational modeling challenges associated with structures subjected to sharp, local heating, where complex temperature gradients in the materials cause three‐dimensional, localized, intense stress and strain variation. Because of the nature of the applied loadings, multiphysics analysis is necessary to accurately predict thermal and mechanical responses. Moreover, bridging spatial scales between localized heating and global responses of the structure is nontrivial. A large global structural model may be necessary to represent detailed geometry alone, and to capture local effects, the traditional approach of pre‐designing a mesh requires careful manual effort. These issues often lead to cumbersome and expensive global models for this class of problems. To address them, the authors introduce a generalized FEM (GFEM) approach for analyzing three‐dimensional solid, coupled physics problems exhibiting localized heating and corresponding thermomechanical effects. The capabilities of traditional hp‐adaptive FEM or GFEM as well as the GFEM with global–local enrichment functions are extended to one‐way coupled thermo‐structural problems, providing meshing flexibility at local and global scales while remaining competitive with traditional approaches. The methods are demonstrated on several example problems with localized thermal and mechanical solution features, and accuracy and (parallel) computational efficiency relative to traditional direct modeling approaches are discussed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
A methodology is presented for generating enrichment functions in generalized finite element methods (GFEM) using experimental and/or simulated data. The approach is based on the proper orthogonal decomposition (POD) technique, which is used to generate low‐order representations of data that contain general information about the solution of partial differential equations. One of the main challenges in such enriched finite element methods is knowing how to choose, a priori, enrichment functions that capture the nature of the solution of the governing equations. POD produces low‐order subspaces, that are optimal in some norm, for approximating a given data set. For most problems, since the solution error in Galerkin methods is bounded by the error in the best approximation, it is expected that the optimal approximation properties of POD can be exploited to construct efficient enrichment functions. We demonstrate the potential of this approach through three numerical examples. Best‐approximation studies are conducted that reveal the advantages of using POD modes as enrichment functions in GFEM over a conventional POD basis. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
New enrichment functions are proposed for crack modelling in orthotropic media using the extended finite element method (XFEM). In this method, Heaviside and near‐tip functions are utilized in the framework of the partition of unity method for modelling discontinuities in the classical finite element method. In this procedure, by using meshless based ideas, elements containing a crack are not required to conform to crack edges. Therefore, mesh generation is directly performed ignoring the existence of any crack while the method remains capable of extending the crack without any remeshing requirement. Furthermore, the type of elements around the crack‐tip remains the same as other parts of the finite element model and the number of nodes and consequently degrees of freedom are reduced considerably in comparison to the classical finite element method. Mixed‐mode stress intensity factors (SIFs) are evaluated to determine the fracture properties of domain and to compare the proposed approach with other available methods. In this paper, the interaction integral (M‐integral) is adopted, which is considered as one of the most accurate numerical methods for calculating stress intensity factors. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
An extended finite element method (X‐FEM) for three‐dimensional crack modelling is described. A discontinuous function and the two‐dimensional asymptotic crack‐tip displacement fields are added to the finite element approximation to account for the crack using the notion of partition of unity. This enables the domain to be modelled by finite elements with no explicit meshing of the crack surfaces. Computational geometry issues associated with the representation of the crack and the enrichment of the finite element approximation are discussed. Stress intensity factors (SIFs) for planar three‐dimensional cracks are presented, which are found to be in good agreement with benchmark solutions. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

10.
A coupling extended multiscale finite element method (CEMsFEM) is developed for the dynamic analysis of heterogeneous saturated porous media. The coupling numerical base functions are constructed by a unified method with an equivalent stiffness matrix. To improve the computational accuracy, an additional coupling term that could reflect the interaction of the deformations among different directions is introduced into the numerical base functions. In addition, a kind of multi‐node coarse element is adopted to describe the complex high‐order deformation on the boundary of the coarse element for the two‐dimensional dynamic problem. The coarse element tests show that the coupling numerical base functions could not only take account of the interaction of the solid skeleton and the pore fluid but also consider the effect of the inertial force in the dynamic problems. On the other hand, based on the static balance condition of the coarse element, an improved downscaling technique is proposed to directly obtain the satisfying microscopic solutions in the CEMsFEM. Both one‐dimensional and two‐dimensional numerical examples of the heterogeneous saturated porous media are carried out, and the results verify the validity and the efficiency of the CEMsFEM by comparing with the conventional finite element method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
We describe a new version of the moving particle finite element method (MPFEM) that provides solutions within a C0 finite element framework. The finite elements determine the weighting for the moving partition of unity. A concept of ‘General Shape Function’ is proposed which extends regular finite element shape functions to a larger domain. These are combined with Shepard functions to obtain a smooth approximation. The Moving Particle Finite Element Method combines desirable features of finite element and meshfree methods. The proposed approach, in fact, can be interpreted as a ‘moving partition of unity finite element method’ or ‘moving kernel finite element method’. This method possesses the robustness and efficiency of the C0 finite element method while providing at least C1 continuity. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
An overview of the extended/generalized finite element method (GEFM/XFEM) with emphasis on methodological issues is presented. This method enables the accurate approximation of solutions that involve jumps, kinks, singularities, and other locally non‐smooth features within elements. This is achieved by enriching the polynomial approximation space of the classical finite element method. The GEFM/XFEM has shown its potential in a variety of applications that involve non‐smooth solutions near interfaces: Among them are the simulation of cracks, shear bands, dislocations, solidification, and multi‐field problems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
基于拓展单位分解有限元方法,将平面波函数和贝塞尔函数作为基函数进行拓展。将亥姆霍兹方程离散,求解时不变情况下多域场内声波的响应,并分析基函数对求解精度的影响。将波动方程的时间导数利用二阶中心差分方法离散,得到方程的隐式表达式,划分时间步迭代求解时变情况下声波在多域场内的响应,分析迭代时间间隔对计算精度的影响,与典型算例的精确解进行比较,验证精确性。结果表明,平面波函数作为拓展基函数,利用二阶中心差分法离散时间导数,分析时不变以及时变情况下多域场内高波数声波的响应问题,具有较高的计算精度和计算效率。  相似文献   

14.
This paper presents improvements to three‐dimensional crack propagation simulation capabilities of the generalized finite element method. In particular, it presents new update algorithms suitable for explicit crack surface representations and simulations in which the initial crack surfaces grow significantly in size (one order of magnitude or more). These simulations pose problems in regard to robust crack surface/front representation throughout the propagation analysis. The proposed techniques are appropriate for propagation of highly non‐convex crack fronts and simulations involving significantly different crack front speeds. Furthermore, the algorithms are able to handle computational difficulties arising from the coalescence of non‐planar crack surfaces and their interactions with domain boundaries. An approach based on moving least squares approximations is developed to handle highly non‐convex crack fronts after crack surface coalescence. Several numerical examples are provided, which illustrate the robustness and capabilities of the proposed approaches and some of its potential engineering applications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
A novel numerical method is proposed for modelling time‐harmonic acoustic propagation of short wavelength disturbances on non‐uniform potential flows. The method is based on the partition of unity finite element method in which a local basis of discrete plane waves is used to enrich the conventional finite element approximation space. The basis functions are local solutions of the governing equations. They are able to represent accurately the highly oscillatory behaviour of the solution within each element while taking into account the convective effect of the flow and the spatial variation in local sound speed when the flow is non‐uniform. Many wavelengths can be included within a single element leading to ultra‐sparse meshes. Results presented in this article will demonstrate that accurate solutions can be obtained in this way for a greatly reduced number of degrees of freedom when compared to conventional element or grid‐based schemes. Numerical results for lined uniform two‐dimensional ducts and for non‐uniform axisymmetric ducts are presented to indicate the accuracy and performance which can be achieved. Numerical studies indicate that the ‘pollution’ effect associated with cumulative dispersion error in conventional finite element schemes is largely eliminated. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
17.
This paper describes the use of the extended finite element method in the context of quadtree/octree meshes. Particular attention is paid to the enrichment of hanging nodes that inevitably arise with these meshes. An approach for enforcing displacement continuity along hanging edges and faces is proposed and validated on various numerical examples (holes, material interfaces, and singularities) in both 2D and 3D. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
A new two‐level multiscale enrichment methodology for analysis of heterogeneous plates is presented. The enrichments are applied in the displacement and strain levels: the displacement field of a Reissner–Mindlin plate is enriched using the multiscale enrichment functions based on the partition of unity principle; the strain field is enriched using the mathematical homogenization theory. The proposed methodology is implemented for linear and failure analysis of brittle heterogeneous plates. The eigendeformation‐based model reduction approach is employed to efficiently evaluate the non‐linear processes in case of failure. The capabilities of the proposed methodology are verified against direct three‐dimensional finite element models with full resolution of the microstructure. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Level set methods have recently gained much popularity to capture discontinuities, including their possible propagation. Typically, the partial differential equations that arise in level set methods, in particular the Hamilton–Jacobi equation, are solved by finite difference methods. However, finite difference methods are less suited for irregular domains. Moreover, it seems slightly awkward to use finite differences for the capturing of a discontinuity, while in a subsequent stress analysis finite elements are normally used. For this reason, we here present a finite element approach to solving the governing equations of level set methods. After a review of the governing equations, the initialization of the level sets, the discretization on a finite domain, and the stabilization of the resulting finite element method will be discussed. Special attention will be given to the proper treatment of the internal boundary condition, which is achieved by exploiting the partition‐of‐unity property of finite element shape functions. Finally, a quantitative analysis including accuracy analysis is given for a one‐dimensional example and a qualitative example is given for a two‐dimensional case with a curved discontinuity. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
对水声构件的声性能进行有限元仿真研究,是因为水声构件的声性能不仅由材料本身的物理参数所决定,而且与其内部空腔形状与分布有关。通过反射波与入射波形成的驻波场声压可以直接计算出水声构件的吸声系数。对多种样品进行仿真与测量,两者结果较为一致。该法不受模型结构复杂性的限制,具有费时少、精度高的特点,为消声瓦等水声构件的声性能预报提供了保证。是预报水声构件声性能的一种便捷工具。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号