首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Predicting localized, nonlinear, thermoplastic behavior and residual stresses and deformations in structures subjected to intense heating is a prevalent challenge in a range of modern engineering applications. The authors present a generalized finite element method targeted at this class of problems, involving the solution of intrinsically parallelizable local boundary value problems to capture localized, time‐dependent thermo‐elasto‐plastic behavior, which is embedded in the coarse, structural‐scale approximation via enrichment functions. The method accommodates approximation spaces that evolve in between time or load steps while maintaining a fixed global mesh, which avoids the need to map solutions and state variables on changing meshes typical of traditional adaptive approaches. Representative three‐dimensional examples exhibiting localized, transient, nonlinear thermal and thermomechanical effects are presented to demonstrate the advantages of the method with respect to available approaches, especially in terms of its flexibility and potential for realistic future applications in this area. Parallelism of the approach is also discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents a generalized finite element method (GFEM) based on the solution of interdependent global (structural) and local (crack)‐scale problems. The local problems focus on the resolution of fine‐scale features of the solution in the vicinity of three‐dimensional cracks, while the global problem addresses the macro‐scale structural behavior. The local solutions are embedded into the solution space for the global problem using the partition of unity method. The local problems are accurately solved using an hp‐GFEM and thus the proposed method does not rely on analytical solutions. The proposed methodology enables accurate modeling of three‐dimensional cracks on meshes with elements that are orders of magnitude larger than the process zone along crack fronts. The boundary conditions for the local problems are provided by the coarse global mesh solution and can be of Dirichlet, Neumann or Cauchy type. The effect of the type of local boundary conditions on the performance of the proposed GFEM is analyzed. Several three‐dimensional fracture mechanics problems aimed at investigating the accuracy of the method and its computational performance, both in terms of problem size and CPU time, are presented. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
The coupling of molecular dynamics (MD) simulations with finite element methods (FEM) yields computationally efficient models that link fundamental material processes at the atomistic level with continuum field responses at higher length scales. The theoretical challenge involves developing a seamless connection along an interface between two inherently different simulation frameworks. Various specialized methods have been developed to solve particular classes of problems. Many of these methods link the kinematics of individual MD atoms with finite element (FE) nodes at their common interface, necessarily requiring that the FE mesh be refined to atomic resolution. Some of these coupling approaches also require simulations to be carried out at 0 K and restrict modelling to two‐dimensional material domains due to difficulties in simulating full three‐dimensional material processes. In the present work, a new approach to MD–FEM coupling is developed based on a restatement of the standard boundary value problem used to define a coupled domain. The method replaces a direct linkage of individual MD atoms and FE nodes with a statistical averaging of atomistic displacements in local atomic volumes associated with each FE node in an interface region. The FEM and MD computational systems are effectively independent and communicate only through an iterative update of their boundary conditions. Thus, the method lends itself for use with any FEM or MD code. With the use of statistical averages of the atomistic quantities to couple the two computational schemes, the developed approach is referred to as an embedded statistical coupling method (ESCM). ESCM provides an enhanced coupling methodology that is inherently applicable to three‐dimensional domains, avoids discretization of the continuum model to atomic scale resolution, and permits finite temperature states to be applied. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

4.
In this study, we develop lower‐dimensional interface elements to represent preexisting fractures in rock material, focusing on finite element analysis of coupled hydro‐mechanical problems in discrete fractures–porous media systems. The method adopts local enrichment approximations for a discontinuous displacement and a fracture relative displacement function. Multiple and intersected fractures can be treated with the new scheme. Moreover, the method requires less mesh dependencies for accurate finiteelement approximations compared with the conventional interface element method. In particular, for coupled problems, the method allows for the use of a single mesh for both mechanical and other related processes such as flow and transport. For verification purposes, several numerical examples are examined in detail. Application to a coupled hydro‐mechanical problem is demonstrated with fluid injection into a single fracture. The numerical examples prove that the proposed method produces results in strong agreement with reference solutions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, we analyse the p‐convergence of a new version of the generalized finite element method (generalized FEM or GFEM) which employs mesh‐based handbook functions which are solutions of boundary value problems in domains extracted from vertex patches of the employed mesh and are pasted into the global approximation by the partition of unity method (PUM). We show that the p‐version of our GFEM is capable of achieving very high accuracy for multiscale problems which may be impossible to solve using the standard FEM. We analyse the effect of the main factors affecting the accuracy of the method namely: (a) The data and the buffer included in the handbook domains, and (b) The accuracy of the numerical construction of the handbook functions. We illustrate the robustness of the method by employing as model problem the Laplacian in a domain with a large number of closely spaced voids. Similar robustness can be expected for problems of heat‐conduction and elasticity set in domains with a large number of closely spaced voids, cracks, inclusions, etc. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
A high‐order generalized finite element method (GFEM) for non‐planar three‐dimensional crack surfaces is presented. Discontinuous p‐hierarchical enrichment functions are applied to strongly graded tetrahedral meshes automatically created around crack fronts. The GFEM is able to model a crack arbitrarily located within a finite element (FE) mesh and thus the proposed method allows fully automated fracture analysis using an existing FE discretization without cracks. We also propose a crack surface representation that is independent of the underlying GFEM discretization and controlled only by the physics of the problem. The representation preserves continuity of the crack surface while being able to represent non‐planar, non‐smooth, crack surfaces inside of elements of any size. The proposed representation also provides support for the implementation of accurate, robust, and computationally efficient numerical integration of the weak form over elements cut by the crack surface. Numerical simulations using the proposed GFEM show high convergence rates of extracted stress intensity factors along non‐planar curved crack fronts and the robustness of the method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
A three‐dimensional microstructure‐based finite element framework is presented for modeling the mechanical response of rubber composites in the microscopic level. This framework introduces a novel finite element formulation, the meshfree‐enriched FEM, to overcome the volumetric locking and pressure oscillation problems that normally arise in the numerical simulation of rubber composites using conventional displacement‐based FEM. The three‐dimensional meshfree‐enriched FEM is composed of five‐noded tetrahedral elements with a volume‐weighted smoothing of deformation gradient between neighboring elements. The L2‐orthogonality property of the smoothing operator enables the employed Hu–Washizu–de Veubeke functional to be degenerated to an assumed strain method, which leads to a displacement‐based formulation that is easily incorporated with the periodic boundary conditions imposed on the unit cell. Two numerical examples are analyzed to demonstrate the effectiveness of the proposed approach. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Interface capturing methods using enriched finite element formulations are well suited for solving multimaterial transport problems that contain weak or strong discontinuities. The conformal decomposition FEM decomposes multimaterial elements of a non‐conforming background mesh into sub‐elements that conform to material interfaces captured using a level set method. As the interface evolves, interfacial nodes move, and background nodes may change material. The present work describes approaches for handling moving interfaces in the context of the conformal decomposition FEM for both weakly and strongly discontinuous fields. Dynamic discretization methods using extrapolation and moving mesh approaches are considered and developed with first‐order and second‐order time integration methods. The moving mesh approach is demonstrated to be a stable method that preserves both weak and strong discontinuities on a variety of one‐dimensional and two‐dimensional test problems, while achieving the expected second‐order error convergence rate in space and time. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents a novel face‐based smoothed finite element method (FS‐FEM) to improve the accuracy of the finite element method (FEM) for three‐dimensional (3D) problems. The FS‐FEM uses 4‐node tetrahedral elements that can be generated automatically for complicated domains. In the FS‐FEM, the system stiffness matrix is computed using strains smoothed over the smoothing domains associated with the faces of the tetrahedral elements. The results demonstrated that the FS‐FEM is significantly more accurate than the FEM using tetrahedral elements for both linear and geometrically non‐linear solid mechanics problems. In addition, a novel domain‐based selective scheme is proposed leading to a combined FS/NS‐FEM model that is immune from volumetric locking and hence works well for nearly incompressible materials. The implementation of the FS‐FEM is straightforward and no penalty parameters or additional degrees of freedom are used. The computational efficiency of the FS‐FEM is found better than that of the FEM. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
Level set methods are becoming an attractive design tool in shape and topology optimization for obtaining efficient and lighter structures. In this paper, a dynamic implicit boundary‐based moving superimposed finite element method (s‐version FEM or S‐FEM) is developed for structural topology optimization using the level set methods, in which the variational interior and exterior boundaries are represented by the zero level set. Both a global mesh and an overlaying local mesh are integrated into the moving S‐FEM analysis model. A relatively coarse fixed Eulerian mesh consisting of bilinear rectangular elements is used as a global mesh. The local mesh consisting of flexible linear triangular elements is constructed to match the dynamic implicit boundary captured from nodal values of the implicit level set function. In numerical integration using the Gauss quadrature rule, the practical difficulty due to the discontinuities is overcome by the coincidence of the global and local meshes. A double mapping technique is developed to perform the numerical integration for the global and coupling matrices of the overlapped elements with two different co‐ordinate systems. An element killing strategy is presented to reduce the total number of degrees of freedom to improve the computational efficiency. A simple constraint handling approach is proposed to perform minimum compliance design with a volume constraint. A physically meaningful and numerically efficient velocity extension method is developed to avoid the complicated PDE solving procedure. The proposed moving S‐FEM is applied to structural topology optimization using the level set methods as an effective tool for the numerical analysis of the linear elasticity topology optimization problems. For the classical elasticity problems in the literature, the present S‐FEM can achieve numerical results in good agreement with those from the theoretical solutions and/or numerical results from the standard FEM. For the minimum compliance topology optimization problems in structural optimization, the present approach significantly outperforms the well‐recognized ‘ersatz material’ approach as expected in the accuracy of the strain field, numerical stability, and representation fidelity at the expense of increased computational time. It is also shown that the present approach is able to produce structures near the theoretical optimum. It is suggested that the present S‐FEM can be a promising tool for shape and topology optimization using the level set methods. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
Efficient modal decomposition of high-dimensional turbulent flow data is an important first step for data reduction, analysis, and low-dimensional predictive modeling. The conventional modal decomposition techniques, such as proper orthogonal and dynamic mode decompositions, aim to represent the system response using spatially global basis vectors that span a broad spatial domain. A significant challenge facing approaches based on global domain decomposition is the rapid increase in both the amount of training data and the number of modes that must be retained for an accurate representation of convection dominated turbulent flows. An alternative generalized finite element (GFEM) based approach is explored for efficient representation of high-dimensional fluid flow data. Here, the standard finite element interpolation method is enriched with numerical functions that are learned from a small amount of high-fidelity training data over spatially localized subdomains. The GFEM approach is demonstrated on a 3D flow past a cylinder at Reynolds number of 100 000 and flows inside a 2D lid-driven cavity over a range of Reynolds numbers. Compared with a global proper orthogonal decomposition, the GFEM-based approach increases efficiency in reconstructing the datasets while also substantially reducing the amounts of training data.  相似文献   

12.
This paper presents a generalized finite element method (GFEM) for crack growth simulations based on a two-scale decomposition of the solution—a smooth coarse-scale component and a singular fine-scale component. The smooth component is approximated by discretizations defined on coarse finite element meshes. The fine-scale component is approximated by the solution of local problems defined in neighborhoods of cracks. Boundary conditions for the local problems are provided by the available solution at a crack growth step. The methodology enables accurate modeling of 3-D propagating cracks on meshes with elements that are orders of magnitude larger than those required by the FEM. The coarse-scale mesh remains unchanged during the simulation. This, combined with the hierarchical nature of GFEM shape functions, allows the recycling of the factorization of the global stiffness matrix during a crack growth simulation. Numerical examples demonstrating the approximating properties of the proposed enrichment functions and the computational performance of the methodology are presented.  相似文献   

13.
14.
We propose a coupled boundary element method (BEM) and a finite element method (FEM) for modelling localized damage growth in structures. BEM offers the flexibility of modelling large domains efficiently, while the non‐linear damage growth is accurately accounted by a local FEM mesh. An integral‐type nonlocal continuum damage mechanics with adapting FEM mesh is used to model multiple damage zones and follow their propagation in the structure. Strong form coupling, BEM hosted, is achieved using Lagrange multipliers. Because the non‐linearity is isolated in the FEM part of the system of equations, the system size is reduced using Schur complement approach, then the solution is obtained by a monolithic Newton method that is used to solve both domains simultaneously. The coupled BEM/FEM approach is verified by a set of convergence studies, where the reference solution is obtained by a fine FEM. In addition, the method is applied to multiple fractures growth benchmark problems and shows good agreement with the literature. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
In the development of the boundary element method (BEM) and the finite element method (FEM) researchers have typically selected similar basis functions. That is, both methods typically employ low‐order interpolations such as piece‐wise linear or piece‐wise quadratic and rely on h‐version refinement to increase accuracy as required. In the case of the FEM, the decision to use low‐order elements is made for computational efficiency as an attractive compromise between local modeling accuracy and sparseness of the resulting linear system. However, in many BEM formulations, low‐order elements may be the only practical choice given the complexity of using analytic integration formulae in conjunction with special integral interpretations. Unlike their efficient use in the FEM, fine meshes of low‐order elements in the BEM are highly inefficient from a computational standpoint given the dense nature of BEM systems. Moreover, owing to singularities in the kernel functions, the BEM should be expected to benefit more so than the FEM from very high levels of local accuracy. Through the use of regularized algorithms which only require numerical integration, p‐version refinement in the BEM is easily extended to include any set of basis functions with no significant increase in programming complexity. Numerical results show that by using interpolations as high as 12th and 16th order, one can expect reductions in error by as many as five orders of magnitude over comparable algorithms based on similar system size. For two‐dimensional problems, it is also shown that, for a given level of error, one can expect reductions in system size by an order of magnitude, thus leading to a reduction in computational expense for conventional algorithms by three orders of magnitude. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
A new Molecular Dynamics Finite Element Method (MDFEM) with a coupled mechanical‐charge/dipole formulation is proposed. The equilibrium equations of Molecular Dynamics (MD) are embedded exactly within the computationally more favourable Finite Element Method (FEM). This MDFEM can readily implement any force field because the constitutive relations are explicitly uncoupled from the corresponding geometric element topologies. This formal uncoupling allows to differentiate between chemical‐constitutive, geometric and mixed‐mode instabilities. Different force fields, including bond‐order reactive and polarisable fluctuating charge–dipole potentials, are implemented exactly in both explicit and implicit dynamic commercial finite element code. The implicit formulation allows for larger length and time scales and more varied eigenvalue‐based solution strategies. The proposed multi‐physics and multi‐scale compatible MDFEM is shown to be equivalent to MD, as demonstrated by examples of fracture in carbon nanotubes (CNT), and electric charge distribution in graphene, but at a considerably reduced computational cost. The proposed MDFEM is shown to scale linearly, with concurrent continuum FEM multi‐scale couplings allowing for further computational savings. Moreover, novel conformational analyses of pillared graphene structures (PGS) are produced. The proposed model finds potential applications in the parametric topology and numerical design studies of nano‐structures for desired electro‐mechanical properties (e.g. stiffness, toughness and electric field induced vibrational/electron‐emission properties). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
This article compares the computational cost, stability, and accuracy of continuous and discontinuous Galerkin Finite Element Methods (GFEM) for various parabolic differential equations including the advection–diffusion equation, viscous Burgers’ equation, and Turing pattern formation equation system. The results show that, for implicit time integration, the continuous GFEM is typically 5–20 times less computationally expensive than the discontinuous GFEM using the same finite element mesh and element order. However, the discontinuous GFEM is significantly more stable than the continuous GFEM for advection dominated problems and is able to obtain accurate approximate solutions for cases where the classic, un-stabilized continuous GFEM fails.  相似文献   

18.
The generalized finite element method (GFEM) was introduced in Reference 1 as a combination of the standard FEM and the partition of unity method. The standard mapped polynomial finite element spaces are augmented by adding special functions which reflect the known information about the boundary value problem and the input data (the geometry of the domain, the loads, and the boundary conditions). The special functions are multiplied with the partition of unity corresponding to the standard linear vertex shape functions and are pasted to the existing finite element basis to construct a conforming approximation. The essential boundary conditions can be imposed exactly as in the standard FEM. Adaptive numerical quadrature is used to ensure that the errors in integration do not affect the accuracy of the approximation. This paper gives an example of how the GFEM can be developed for the Laplacian in domains with multiple elliptical voids and illustrates implementation issues and the superior accuracy of the GFEM versus the standard FEM. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

19.
This paper studies the static fracture problems of an interface crack in linear piezoelectric bimaterial by means of the extended finite element method (X‐FEM) with new crack‐tip enrichment functions. In the X‐FEM, crack modeling is facilitated by adding a discontinuous function and crack‐tip asymptotic functions to the classical finite element approximation within the framework of the partition of unity. In this work, the coupled effects of an elastic field and an electric field in piezoelectricity are considered. Corresponding to the two classes of singularities of the aforementioned interface crack problem, namely, ? class and κ class, two classes of crack‐tip enrichment functions are newly derived, and the former that exhibits oscillating feature at the crack tip is numerically investigated. Computation of the fracture parameter, i.e., the J‐integral, using the domain form of the contour integral, is presented. Excellent accuracy of the proposed formulation is demonstrated on benchmark interface crack problems through comparisons with analytical solutions and numerical results obtained by the classical FEM. Moreover, it is shown that the geometrical enrichment combining the mesh with local refinement is substantially better in terms of accuracy and efficiency. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper aspects of the nonuniform transformation field analysis (NTFA) introduced by Michel and Suquet (Int. J. Solids Struct. 2003; 40 :6937–6955) are investigated for materials with three‐dimensional microtopology. A novel implementation of the NTFA into the finite element method (FEM) is described in detail, whereas the NTFA was originally used in combination with the fast Fourier transformation (FFT). In particular, the discrete equivalents of the averaging operators required for the preprocessing steps and an algorithm for the implicit time integration and linearization of the constitutive equations of the homogenized material are provided. To the authors knowledge this is the first implementation of the method for three‐dimensional problems. Further, an alternative mode identification strategy is proposed with the aim of small computational cost in combination with good efficiency. The new identification strategy is applied to three‐dimensional metal matrix composites in order to investigate its effective non‐linear behaviour. The homogenized material model is implemented into ABAQUS/STANDARD. Numerical examples at integration point level and in terms of structural problems highlight the efficiency of the method for three‐dimensional problems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号