首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
This paper is concerned with numerical solution of the transient acoustic–structure interaction problems in three dimensions. An efficient and higher‐order method is proposed with a combination of the exponential window technique and a fast and accurate boundary integral equation solver in the frequency‐domain. The exponential window applied to the acoustic–structure system yields an artificial damping to the system, which eliminates the wrap‐around errors brought by the discrete Fourier transform. The frequency‐domain boundary integral equation approach relies on accurate evaluations of relevant singular integrals and fast computation of nonsingular integrals via the method of equivalent source representations and the fast Fourier transform. Numerical studies are presented to demonstrate the accuracy and efficiency of the method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
A new transformation technique is introduced for evaluating the two‐dimensional nearly singular integrals, which arise in the solution of Laplace's equation in three dimensions, using the boundary element method, when the source point is very close to the element of integration. The integrals are evaluated using (in a product fashion) a transformation which has recently been used to evaluate one‐dimensional near singular integrals. This sinh transformation method automatically takes into account the position of the projection of the source point onto the element and also the distance b between the source point and the element. The method is straightforward to implement and, when it is compared with a number of existing techniques for evaluating two‐dimensional near singular integrals, it is found that the sinh method is superior to the existing methods considered, both for potential integrals across the full range of b values considered (0<b?10), and for flux integrals where b>0.01. For smaller values of b, the use of the Lmethod is recommended for flux integrals. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
An analytical method for calculating dynamic stress intensity factors in the mixed mode (combination of opening and sliding modes) using complex functions theory is presented. The crack is in infinite medium and subjected to the plane harmonic waves. The basis of the method is grounded on solving the two‐dimensional wave equations in the frequency domain and complex plane using mapping technique. In this domain, solution of the resulting partial differential equations is found in the series of the Hankel functions with unknown coefficients. Applying the boundary conditions of the crack, these coefficients are calculated. After solving the wave equations, the stress and displacement fields, also the J‐integrals are obtained. Finally using the J‐integrals, dynamic stress intensity factors are calculated. Numerical results including the values of dynamic stress intensity factors for a crack in an infinite medium subjected to the dilatation and shear harmonic waves are presented.  相似文献   

4.
The problem of wave scattering by a plane crack is solved, either in the case of acoustic waves or in the case of elastic waves incidence using the boundary integral equation method. A collocation method is often used to solve that equation, but here we will use a variational method, first writing the problem of Fourier variables, and then writing the associated integrals in the sesquilinear form with weak singularity kernels. This representation is used in the numerical approach, made with a finite element method in the surface of the crack. Numerical tests were made with circular and elliptical cracks, but this method can be extended to other shapes, with the same convergence profiles. Extensive results are given concerning the crack opening displacement, the scattering cross-section, the back-scattered amplitude and far-field patterns.  相似文献   

5.
Accurate numerical integration of line integrals is of fundamental importance to reliable implementation of the boundary element method. Usually, the regular integrals arising from a boundary element method implementation are evaluated using standard Gaussian quadrature. However, the singular integrals which arise are often evaluated in another way, sometimes using a different integration method with different nodes and weights. Here, a co‐ordinate transformation technique is introduced for evaluating weakly singular integrals which, after some initial manipulation of the integral, uses the same integration nodes and weights as those of the regular integrals. The transformation technique is based on newly defined semi‐sigmoidal transformations, which cluster integration nodes only near the singular point. The semi‐sigmoidal transformations are defined in terms of existing sigmoidal transformations and have the benefit of evaluating integrals more accurately than full sigmoidal transformations as the clustering is restricted to one end point of the interval. Comparison of this new method with existing coordinate transformation techniques shows that more accurate evaluation of weakly singular integrals can be obtained. Based on observation of several integrals considered, guidelines are suggested for the type of semi‐sigmoidal transformation to use and the degree to which nodes should be clustered at the singular points. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
Implementation of Dirichlet boundary conditions in mesh‐free methods is problematic. In Wagner and Liu (International Journal for Numerical Methods in Engineering 2001; 50 :507), a hierarchical enrichment technique is introduced that allows a simple implementation of the Dirichlet boundary conditions. In this paper, we provide some error analysis for the hierarchical enrichment mesh‐free technique. We derive optimal order error estimates for the hierarchical enrichment mesh‐free interpolants. For one‐dimensional elliptic boundary value problems, we can directly apply the interpolation error estimates to obtain error estimates for the mesh‐free solutions. For higher‐dimensional problems, derivation of error estimates for the mesh‐free solutions depends on the availability of an inverse inequality. Numerical examples in 1D and 2D are included showing the convergence behaviour of mesh‐free interpolants and mesh‐free solutions when the hierarchical enrichment mesh‐free technique is employed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
A numerical solution of integral equations typically requires calculation of integrals with singular kernels. The integration of singular terms can be considered either by purely numerical techniques, e.g. Duffy's method, polar co‐ordinate transformation, or by singularity extraction. In the latter method the extracted singular integral is calculated in closed form and the remaining integral is calculated numerically. This method has been well established for linear and constant shape functions. In this paper we extend the method for polynomial shape functions of arbitrary order. We present recursive formulas by which we can extract any number of terms from the singular kernel defined by the fundamental solution of the Helmholtz equation, or its gradient, and integrate the extracted terms times a polynomial shape function in closed form over plane triangles or tetrahedra. The presented formulas generalize the singularity extraction technique for surface and volume integral equation methods with high‐order basis functions. Numerical experiments show that the developed method leads to a more accurate and robust integration scheme, and in many cases also a faster method than, for example, Duffy's transformation. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents a study of the performance of the non‐linear co‐ordinate transformations in the numerical integration of weakly singular boundary integrals. A comparison of the smoothing property, numerical convergence and accuracy of the available non‐linear polynomial transformations is presented for two‐dimensional problems. Effectiveness of generalized transformations valid for any type and location of singularity has been investigated. It is found that weakly singular integrals are more efficiently handled with transformations valid for end‐point singularities by partitioning the element at the singular point. Further, transformations which are excellent for CPV integrals are not as accurate for weakly singular integrals. Connection between the maximum permissible order of polynomial transformations and precision of computations has also been investigated; cubic transformation is seen to be the optimum choice for single precision, and quartic or quintic one, for double precision computations. A new approach which combines the method of singularity subtraction with non‐linear transformation has been proposed. This composite approach is found to be more accurate, efficient and robust than the singularity subtraction method and the non‐linear transformation methods. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
The typical Boundary Element Method (BEM) for fourth‐order problems, like bending of thin elastic plates, is based on two coupled boundary integral equations, one strongly singular and the other hypersingular. In this paper all singular integrals are evaluated directly, extending a general method formerly proposed for second‐order problems. Actually, the direct method for the evaluation of singular integrals is completely revised and presented in an alternative way. All aspects are dealt with in detail and full generality, including the evaluation of free‐term coefficients. Numerical tests and comparisons with other regularization techniques show that the direct evaluation of singular integrals is easy to implement and leads to very accurate results. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
Accurate numerical evaluation of integrals arising in the boundary element method is fundamental to achieving useful results via this solution technique. In this paper, a number of techniques are considered to evaluate the weakly singular integrals which arise in the solution of Laplace's equation in three dimensions and Poisson's equation in two dimensions. Both are two‐dimensional weakly singular integrals and are evaluated using (in a product fashion) methods which have recently been used for evaluating one‐dimensional weakly singular integrals arising in the boundary element method. The methods used are based on various polynomial transformations of conventional Gaussian quadrature points where the transformation polynomial has zero Jacobian at the singular point. Methods which split the region of integration into sub‐regions are considered as well as non‐splitting methods. In particular, the newly introduced and highly accurate generalized composite subtraction of singularity and non‐linear transformation approach (GSSNT) is applied to various two‐dimensional weakly singular integrals. A study of the different methods reveals complex relationships between transformation orders, position of the singular point, integration kernel and basis function. It is concluded that the GSSNT method gives the best overall results for the two‐dimensional weakly singular integrals studied. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
A new support integration technique is proposed, which is similar to those used in truly mesh‐free methods. The contribution of this paper is to exploit the divergence‐free condition for the support integrals to construct quadrature formulas that only require three integration points per particle in two dimensions. Numerical examples show that the proposed integration method can achieve results that agree with manufactured closed‐form solutions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
The present work addresses a multiscale framework for fast‐Fourier‐transform–based computational homogenization. The framework considers the scale bridging between microscopic and macroscopic scales. While the macroscopic problem is discretized with finite elements, the microscopic problems are solved by means of fast‐Fourier‐transforms (FFTs) on periodic representative volume elements (RVEs). In such multiscale scenario, the computation of the effective properties of the microstructure is crucial. While effective quantities in terms of stresses and deformations can be computed from surface integrals along the boundary of the RVE, the computation of the associated moduli is not straightforward. The key contribution of the present paper is the derivation and implementation of an algorithmically consistent macroscopic tangent operator which directly resembles the effective moduli of the microstructure. The macroscopic tangent is derived by means of the classical Lippmann‐Schwinger equation and can be computed from a simple system of linear equations. This is performed through an efficient FFT‐based approach along with a conjugate gradient solver. The viability and efficiency of the method is demonstrated for a number of two‐ and three‐dimensional boundary value problems incorporating linear and nonlinear elasticity as well as viscoelastic material response.  相似文献   

13.
In the context of two‐dimensional linear elasticity, this paper presents the closed form of the integrals that arise from both the standard (collocation) boundary element method and the symmetric Galerkin boundary element method. Adopting polynomial shape functions of arbitrary degree on straight elements, finite part of Hadamard, Cauchy principal values and Lebesgue integrals are computed analytically, working in a local coordinate system. For the symmetric Galerkin boundary element method, a study on the singularity of the external integral is conducted and the outer weakly singular integral is analytically performed. Numerical tests are presented as a validation of the obtained results. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, the numerical modelling of complete sliding contact and its associated singularity is carried out using the partition of unity finite element method. Sliding interfaces in engineering components lead to crack nucleation and growth in the vicinity of the contact zone. To accurately capture the singular stress field at the contact corner, we use the partition of unity framework to enrich the standard displacement‐based finite element approximation by additional (enriched) functions. These enriched functions are derived from the analytical expression of the asymptotic displacement field in the vicinity of the contact corner. To characterize the intensity of the singularity, a domain integral formulation is adopted to compute the generalized stress intensity factor (GSIF). Numerical results on benchmark problems are presented to demonstrate the improved accuracy and benefits of this technique. We conduct an investigation on issues pertaining to the extent of enrichment, accurate numerical integration of weak‐form integrals and the rate of convergence in energy. The use of partition of unity enrichment leads to accurate estimations of the GSIFs on relatively coarse meshes, which is particularly beneficial for modelling non‐linear sliding contacts. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
This paper presents a new method for the direct and accurate evaluation of strongly singular integrals in the sense of Cauchy principal values and weakly singular integrals over quadratic boundary elements in three-dimensional stress analysis and quadratic internal cells in two-dimensional elastoplastic analysis by the boundary element method. A quadratic triangle polar co-ordinate transformation technique is applied to reduce the order of singularity of the singular integrals. Next, a form of Stokes' theorem is introduced in order to remove the singularity in the Cauchy principal value integrals; therefore, the evaluation of these integrals can be carried out by standard Gaussian quadrature. Numerical examples of 2-D elastoplastic problems and a 3-D elastic problem show the effectiveness and efficiency of the method.  相似文献   

16.
In this paper, a nonlinear Dirichlet–Robin iteration‐by‐subdomain domain decomposition method is studied for a multidimensional, multiphysics, and multiphase model of polymer electrolyte fuel cell (PEFC) containing micro‐porous layer (MPL). Across the interface of gas diffusion layer and MPL in PEFC, it is well known that the capillary pressure is continuous, whereas liquid saturation is discontinuous, by which the liquid‐water removal in the porous electrodes can be significantly enhanced. We design a type of non‐overlapping domain decomposition method to deal with water transport in such multi‐layer diffusion media, where Kirchhoff transformation and its inverse techniques are employed to conquer the discontinuous and degenerate water diffusivity in the coexisting single‐phase and two‐phase regions. In addition, the conservation equations of mass, momentum, charge, and hydrogen and oxygen transport are also solved by the combined finite element–upwind finite volume method (FEM/FVM) to overcome the dominated convection effect in gas channels. Numerical simulations demonstrate that the presented techniques are effective in obtaining a fast and convergent nonlinear iteration for such a 3D PEFC model within around 50 steps, in contrast with the oscillatory and nonconvergent iteration conducted by standard FEM/FVM. A series of numerical convergence tests are also carried out to verify the efficiency and accuracy of the present numerical techniques. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
A new wavelet matrix transform (WMT), operated by lifting wavelet‐like transform (LWLT), is applied to the solution of matrix equations in computational electromagnetics. The method can speedup the WMT without allocating auxiliary memory for transform matrices and can be implemented with the absence of the fast Fourier transform. Furthermore, to handle the matrix equation of arbitrarily dimension, a new in‐space preprocessing technique based on LWLT is constructed to eliminate the limitation in matrix dimension. Complexity analysis and numerical simulation show the superiority of the proposed algorithm in saving CPU time. Numerical simulations for scattering analysis of differently shaped objects are considered to validate the effectiveness of the proposed method. In particular, due to its generality, the proposed preprocessing technique can be extended to other engineering areas and therefore can pave a broad way for the application of the WMT. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
The scaled boundary finite‐element method is extended to the modelling of thermal stresses. The particular solution for the non‐homogeneous term caused by thermal loading is expressed as integrals in the radial direction, which are evaluated analytically for temperature changes varying as power functions of the radial coordinate. When applied to model a multi‐material corner, only the boundary of the problem domain is discretized. The boundary conditions on the straight material interfaces and the side‐faces forming the corner are satisfied analytically without discretization. The stress field is expressed semi‐analytically as a series solution. The stress distribution along the radial direction, including both the real and complex power singularity and the power‐logarithmic singularity, is represented analytically. The stress intensity factors are determined directly from their definitions in stresses. No knowledge on asymptotic expansions is required. Numerical examples are calculated to evaluate the accuracy of the scaled boundary finite‐element method. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
This paper develops an FBP‐MAP (filtered backprojection, maximum a posteriori) algorithm to reconstruct MRI images from undersampled data. An objective function is first set up for the MRI reconstruction problem with a data fidelity term and a Bayesian term. The Bayesian term is a constraint in the temporal dimension. This objective function is minimized using the calculus of variations. The proposed algorithm is non‐iterative. Undersampled dynamic myocardial perfusion MRI data were used to test the feasibility of the proposed technique. It is shown that the non‐iterative Fourier–Bayesian reconstruction method effectively incorporates the temporal constraint and significantly reduces the angular aliasing artifacts caused by undersampling. A significant advantage of the proposed non‐iterative Fourier–Bayesian technique over the iterative techniques is its fast computation time and its ability to reach the optimal solution. © 2013 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 23, 53–58, 2013.  相似文献   

20.
A precorrected fast Fourier transform (pFFT) accelerated boundary element method (BEM) for large‐scale transient elastodynamic analysis is developed and described in this paper. The frequency‐domain approach is used. To overcome the ‘wrap‐around’ problem associated with the discrete Fourier transform, the exponential window method (EWM) is employed and incorporated in the frequency‐domain BEM. An improved implementation scheme of the pFFT method based on polynomial interpolation technique is developed and applied to accelerate the elastodynamic BEM. This new scheme reduces the memory required to save the convolution matrix by a factor of 8. To further improve the efficiency of the code, a newly developed linear system solver based on the induced dimension reduction method is employed. Its performance is investigated and compared with that of the well‐known GMRES. The accuracy and computational efficiency of the method are evaluated and demonstrated by three examples: a classical benchmark, a plate subject to an impact loading and a porous cube with nearly half million DOFs subject to a step traction loading. Both analytical and experimental results are employed to validate the method. It has been found that the EWM can effectively resolve the wrap‐around problem and accurate time responses for an arbitrarily chosen time period can be obtained. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号