首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
基于非参数条件异方差估计理论,提出了一种改进的电价曲线预测方法。文中从实际电价曲线出发,针对条件方差函数建模,并采用非参数估计方法确定其模型。另外,在非参数估计中,针对条件标准差不可测困难,引入了迭代估计算法,通过不断修正作为输入量的条件标准差估计值来提高条件方差函数的估计可信度。在研究加州电力市场2000年日前电价时间序列波动特性的基础上,对Humb节点的日前电价时间序列进行建模并模拟预测。试验结果表明,文中所提模型能够更好地体现电价时间序列波动集群性这一特征,利用非参数估计所确定的模型提升了尖峰电价的预测效果。  相似文献   

2.
GARCH族模型在电力市场电价预测中的比较研究   总被引:1,自引:0,他引:1       下载免费PDF全文
电力市场电价的剧烈波动存在巨大的风险。准确的电价预测有助于市场参与者管理风险并达到自身利益的最大化。用ARMA—GARCH族模型对美国PJM电力市场和北欧电力市场的日前小时电价序列进行建模和预测。在模型估计时假设残差分别服从正态分布和学生t分布,进而比较不同模型对不同电力市场日前电价的预测精度。通过比较得出,非对称的GARCH模型预测效果较好。但ARMA—GARCH族模型不适用于波动异常剧烈、电价序列间相关性较弱的电力市场,并以澳大利亚电力市场电价数据为例进行了分析。  相似文献   

3.
电力市场中,市场出清电价具有较强的波动性、周期性和随机性,实践证明单一的电价预测模型很难提高预测精度。针对该问题,提出一种基于多因素小波变换和多变量时间序列模型的日前电价预测方法。利用小波变换将历史电价序列和负荷序列分解和重构成概貌电价、细节电价和概貌负荷、细节负荷。用概貌电价和概貌负荷作变量建立多元时间序列模型,预测未来概貌电价;用单变量时间序列模型预测未来细节电价。将概貌电价和细节电价的预测结果求和作为最终的预测电价。采用上述方法对美国加州电力市场日前电价进行预测,并与对比模型进行了详细的比较分析,结果表明该方法能够提供更准确的预测电价。  相似文献   

4.
基于GARCH误差校正的遗传支持向量机日前电价预测   总被引:2,自引:0,他引:2  
针对时间序列预测和智能算法预测各自的侧重点不同,结合两者优点对日前市场电价进行预测。首先建立支持向量机(SVM)模型对单一时点电价进行预测,将遗传算法(GA)嵌入SVM模型中来保证SVM参数选择最优。针对SVM-GA模型训练误差和测试误差存在一定的相关性和条件异方差性,采用广义自回归条件异方差(GARCH)模型对误差序列进行拟合。然后利用拟合好的GARCH模型对SVM-GA模型预测误差进行预测,最后根据GARCH预测结果对SVM-GA模型预测进行校正。用该方法对美国PJM电力市场2005年8月份日前电价进行连续预测,总体平均误差仅8.19%,比普通方法误差减少了将近4个百分点。  相似文献   

5.
由于电价波动具有非线性及波动集群现象,因此提出了一种基于小波分析和广义自回归条件异方差模型相结合的短期电价预测新方法。首先应用小波分解原理将电价序列分解成低频部分和高频部分,在此基础上对各子序列分别建立广义自回归条件异方差模型并进行预测;然后利用小波理论对各子序列的预测结果进行重构,实现对原始电价序列的预测;最后以美国加州电力市场历史数据为例进行了验证,结果表明本文方法是可行和有效的。  相似文献   

6.
电力市场中的电价序列存在很大的随机波动和价格尖峰。文章提出根据电价序列的变化特点,通过小波变换将其分解为概貌序列和细节序列,从而在不同尺度上反映电价的变化规律。通过概貌分量找出电价的主要波动规律,并由此对电价进行预测,剔除细节分量所反映的电价的随机波动影响。建立考虑异方差的广义自回归条件异方差模型(generalized autoregressive conditional heteroscedasticity,GARCH)对概貌序列建模,并在GARCH模型中加入外生变量形成GARCHX模型,以弥补传统时间序列模型忽略外界影响的缺陷。对美国PJM电力市场的实例研究表明,所建立的W-GARCHX模型比传统时间序列模型的预测精度有明显提高。  相似文献   

7.
针对主变压器缺陷率序列具有的非线性和非平稳性特点,以及主变压器缺陷发生具有季节性的特征,提出将主变压器缺陷率序列进行季节性分解和时间序列ARIMA预测相结合对主变缺陷率进行预测,以探寻较为有效的主变压器缺陷率的预测方法。首先,对原始序列进行预处理,将其分解为一系列不同的模式分量,这样能够突出原始主变缺陷率序列的局部特征信息;然后,分析各分量,根据其变化规律,采用时间序列法建立相应的模型并进行预测,这样既简化了建立的模型又降低了不同分量间的干涉和耦合;最后将各分量的预测值叠加得到缺陷率的预测值。算例结果表明,该方法具有较好的预测效果。  相似文献   

8.
基于时间序列ARMAX模型的短期电价预测方法   总被引:3,自引:0,他引:3  
电力市场环境下,准确的电价预测可为市场参与者制定合理的竞争策略提供重要的参考信息.在对美国PJM电力市场日前电价的各种影响因素和波动规律综合分析的基础上,建立了一个基于ARMAX考虑负荷与电价之间非线性关系的短期电价预测模型.对PJM电力市场2008年1月到4月的历史数据的算例研究表明,该方法能够准确反映电价的变化规律,具有较高的预测准确性.  相似文献   

9.
基于EEMD,SVM和ARMA组合模型的电价预测   总被引:1,自引:0,他引:1  
随着我国电力体制改革的不断深入,售电公司作为电力市场的主要参与者,其主要获利方式是从电力市场中购买电量并销售给用户.因此准确预测现货市场电价变化趋势,是售电公司降低购售电风险的重要保障.为此,根据现货市场中电价的特性,提出基于集成经验模态分解(ensemble empirical mode decomposition,...  相似文献   

10.
基于时间序列模型的电价预测方法   总被引:2,自引:0,他引:2       下载免费PDF全文
通过对美国PJM电力市场2006年8月到11月的日前电价的分析研究,提出了一种基于时间序列的自回归积分滑动平均模型(ARIMA)及自回归条件异方差(ARCH)模型和神经网络的组合模型来预测美国PJM电力市场未来24小时的日前电价, 季节性ARIMA模型反映了电价趋势性、季节性,ARCH模型反映了电价的异方差性,因此该模型能够很好地反映电价的特点,预测结果良好,应用前景广阔。  相似文献   

11.
考虑外生变量的广义自回归条件异方差日前电价预测模型   总被引:2,自引:0,他引:2  
牛东晓  刘达  冯义  李金超 《电网技术》2007,31(22):44-48
利用广义自回归条件异方差模型预测电价,并在该模型中引入周用电比率作为外生变量,以增加模型对外界影响的响应。采用上述方法对美国PJM电力市场2004年12月份的日前电价进行预测,结果表明该方法对高峰时段电价的预测精度明显高于与之对比的其他模型,整体预测精度也好于对比模型。  相似文献   

12.
基于动态计量经济学模型的短期电价预测   总被引:3,自引:3,他引:3  
电力市场中的电价受众多因素影响,单变量时间序列法已很难提高短期电价的预测精度。针对该问题,文中运用时间序列模型的动态计量方法来预测短期电价。首先建立电价和电量的一般自回归分布滞后模型;然后对电价和电量的时间序列数据进行预处理;在通过平稳性和协整性检验后,建立误差修正模型,最终由Eviews 5.0估计出模型的参数。利用此模型对澳大利亚新南威尔士州电力市场的短期电价进行预测,结果表明此模型具有较高的预测精度。  相似文献   

13.
基于隐马尔科夫误差校正的日前电价预测   总被引:1,自引:0,他引:1  
电价预测误差是一个双随机过程,一方面是模型本身预测能力的状态序列,体现了模型对某点理想数据(剔除了随机波动的电价)的预测状态(偏高、偏低或者正常);另一方面,则表现为在不同状态下模型对真实电价(包含随机波动)预测的误差。通过采用隐马尔科夫模型,对电价预测建模的误差进行分析,找出模型预测状态的转移规律以及模型在不同状态下的误差分布;并由此分析下一步的模型预测状态和误差概率分布,在此基础上对未来的模型预测误差进行预测校正。对美国电力市场的研究表明,该方法有效提高了模型的预测精度。  相似文献   

14.
牛东晓  刘达  邢棉  冯义  陈广娟 《电网技术》2007,31(18):15-18
针对电力市场中日前24点电价特性差异较大、采用单一模型很难描述的特点,建立多个模型分别对其进行预测,将数据空间按时点划分成24个子空间,然后根据这些子空间的相似性通过自组织映射对其进行自动聚类,并在不同类别的子空间分别建立支持向量机模型进行训练和预测。应用上述方法对PJM电力市场2005年8月的31天日前24点电价进行预测,结果表明该方法能够有效提高预测精度。  相似文献   

15.
时间序列分解在短期电价分析与预测中的应用   总被引:1,自引:0,他引:1  
为了提高短期电价预测的精度,将电价分解成工作日电价和周末电价两个时间序列,并且,通过移动平均法和离散傅立叶变换,分别将这两个时间序列分成趋势分量、周期分量和随机分量三个组成部分,然后,分别采用移动平均法、外推法和最小二乘支持向量机对这三个组成部分进行预测以求得两个电价时间序列未来的预测值.仿真结果表明,与采用传统BP神...  相似文献   

16.
针对短期负荷预测,提出了累积式自回归动平均(auto-regressive integrated moving average,ARIMA)传递函数模型的简化建模方法。传递函数模型考虑了干扰因素对因变量的作用,体现了干扰因素中变量间相互影响的关系。其构造灵活,可用较少的参数建立阶数较高的模型;并且假定值较少,容易得到满足。该文还将温度因素考虑在内,通过算例将传递函数模型和ARIMA模型的预测结果与实际值进行了比较,结果表明采用传递函数改进后的ARIMA模型预测精度提高,预测误差减小,具有较强的实用性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号