首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
根据紧密堆积原理,通过正交试验研究了多元胶凝粉体材料各组分的水化进程匹配和复合胶凝效应.试验结果表明:改变胶凝组分含量和细度以及钢纤维的掺量可以调控多元胶凝粉体的流动性和强度.在90℃热水养护钢纤维体积纤维掺量在2.5%时可配制出抗折强度超40 MPa,抗压强度超200 MPa的自密实高性能水泥基复合材料.  相似文献   

2.
采用交流阻抗谱测试方法,研究了羟乙基甲基纤维素对水泥水化进程的影响规律.研究表明,交流阻抗谱图及其阻抗参数能在一定程度上反映掺羟乙基甲基纤维素水泥浆体的水化进程情况.羟乙基甲基纤维素能显著延缓阻抑水泥水化进程,降低水泥水化程度和水化产物CSH凝胶的生成速率,且能增大水泥浆体的孔溶液黏度,降低孔溶液离子迁移速率,从而导致水泥浆体的电化学反应显著滞后于其水化反应,还能使得水泥浆体孔结构更为简单、均匀;掺量越大,羟乙基甲基纤维素对水泥水化进程的影响程度越大.  相似文献   

3.
坍落度损失是由于水泥水化造成的,延缓水泥的水化进程必然能够改善坍落度损失,因此在减水剂中复合缓凝组分,是目前降低坍落度损失最有效的方法之一。不同的缓凝剂的缓凝机理不一样,单一使用缓凝剂效果不明显,采取多元复合、有机无机复合等手段,可以有效抑制混凝土坍落度损失。  相似文献   

4.
采用钠盐作为激发剂,通过水化热测定、扫描电镜(SEM)分析和水化动力学模拟,研究了不同钠盐激发钢渣水泥的早期水化进程、水化特性及其水化动力学.结果 表明:钠盐掺入不影响钢渣水泥的水化进程,掺与不掺钠盐的钢渣水泥水化进程均分为起始快速放热期、诱导期、加速期、减速期和衰减期5个阶段;加速期水化反应由成核反应控制,属自催化反应;减速期水化反应由相边界反应与扩散机制共同控制;衰减期水化反应由扩散机制控制;由于反应机理的不同,加速期反应速率常数是衰减期的6~8倍,掺入钠盐的钢渣水泥反应速率常数大于未掺钠盐的,钠盐的掺入有助于钢渣水泥水化反应的进行,不同钠盐对水化的促进作用表现不同,加速期前铝酸钠对水化的促进效果较好,而到减速期后硅酸钠表现更佳.  相似文献   

5.
在水泥浆体中掺入以氧化钙为主要组分的复合膨胀体系,采用化学分析(硝酸锶催化-乙二醇-乙醇-苯甲酸法)和仪器分析(差示扫描量热(DSC))相结合的方法,测试水泥浆体中游离氧化钙(f-CaO)的含量变化,并分析了氢氧化钙、碳酸钙和硫酸钙等水泥浆体中常见含钙矿物对测试结果的影响,获得了f-CaO在水泥浆体中的水化反应程度随时间的变化规律.结果表明:膨胀熟料中的f-CaO在水泥浆体中的反应极为迅速,在20℃恒温条件下,水胶比为0.4的水泥浆体加水搅拌2h后f-CaO的水化反应程度即达到30%,1d反应程度即超过50%,7d基本反应完全.因而f-CaO的水化膨胀作用主要发生在7d前,7d后的膨胀则主要来源于膨胀熟料中硫酸钙、硫铝酸钙等组分的继续水化.水泥浆体中葡萄糖酸钠缓凝剂的掺加对膨胀熟料中f-CaO的水化反应有一定延迟作用,但效果有限.  相似文献   

6.
用电学方法研究了波特兰水泥的水化诱导期.测定了不同水化时间波特兰水泥浆体的电阻率、钙离子浓度、氢氧化钙含量和氢氧化钙分解温度,并结合水泥水化放热速率,讨论了水泥的各水化阶段.研究结果表明:水泥水化时,浆体电阻率变化表现出一定的规律性;电阻率最小值至电阻率开始加速上升之间的时间即为水泥水化反应的诱导期,诱导期的开始和结束都与氢氧化钙的生长有关.  相似文献   

7.
基于水泥水化进程,考虑水泥水化进程中孔隙率和孔隙溶液离子浓度的动态演变规律,建立水胶比、水泥组分与硬化水泥浆体电导率间的关系,提出一种硬化水泥浆体电导率的动态计算模型.结果 表明:所提模型可以计算不同龄期及水胶比硬化水泥浆体的电导率,整体计算误差在10%以内,尤其28 d硬化水泥浆体电导率的计算误差小于5%;随着水化龄...  相似文献   

8.
在本论文中报道了关于实验室制的不同组分硅酸盐水泥系列的水化及强度发展的资料.这一工作的目的在于,在严格控制的条件下研究熟料的不同组分对于水化速率、所形成的各相习性、特别是对于强度发展的影响.  相似文献   

9.
研究了三乙醇胺(TEA)对锂渣复合水泥力学强度及水化性能的影响。结果表明:TEA对锂渣复合水泥水化的影响与其掺量相关性较大。适量TEA(0.06%~0.08%)可促进锂渣中矿物相的溶解和水化,促进SiO2及Al2O3等活性组分与Ca(OH)2发生二次水化反应,生成较多水化产物,提高复合水泥的水化程度,使得硬化水泥石结构不断密实,强度不断提高。但过量TEA(0.1%~0.2%)显著延缓复合水泥的水化进程,降低胶砂早期力学强度增长趋势。  相似文献   

10.
通过外掺Na_2SO_4的方式,将低热水泥中的碱含量(质量分数,下同)提高至0.80%,1.20%和1.60%.利用微量热仪研究了以硫酸盐形式存在的碱对低热水泥早期水化进程的影响,并通过水化动力学模型具体分析了碱对低热水泥各水化阶段的影响,最后利用29Si和27Al固体魔角核磁共振技术,研究了碱对低热水泥水化产物中含Al相和含Si相组成结构的影响.结果表明:碱能促进低热水泥的水化,但在一定碱含量范围内,低热水泥的水化并不随着碱含量的增加而显著增加,这种促进作用主要是由于碱提高了水泥结晶成核和晶体生长速率,并延长了相边界反应阶段;此外,碱在一定程度上促进了低热水泥中的Al向C-S-H链中转移,但随着碱含量的增加,Al在C-S-H链中的相对含量降低,更倾向于向六配位的AFt中转移.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号