首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
根据非局部弹性理论,研究压杆稳定性和弹性杆件轴向振动问题。结合三种典型边界条件,推导临界压力及固有频率非局部理论解。该显式解表明,无量纲小尺度参数的增大会使临界压力及固有频率减小。由压杆稳定性算例结果显示,非局部临界压力随着压杆长度的增加而减小,当压杆长度接近宏观尺寸时,临界压力趋于稳定。与经典连续介质力学相比,非局部临界压力及固有频率降低,说明经典力学高估小尺度下压杆受压承载能力及结构振动频率,随着压杆长度的增加,经典解与非局部解趋于一致。  相似文献   

2.
在微机电系统中,微纳米构件常常表现出尺度效应。基于非局部弹性理论,建立了微圆轴的扭转振动模型,并结合3种常见的边界条件,给出了具体的算例。结果表明:对比于经典连续力学,非局部弹性理论预言的圆轴扭转振动固有频率下降,并且微圆轴的外特征尺度即横截面半径越小,二者相差越大;振动频率的阶数越高,影响也越明显。随着截面半径的增加,振动频率下降并且非局部尺度效应逐渐消失。同时考察了扭转振动的模态函数和相对转角,发现前者与经典弹性理论结果一致。此外还讨论了材料内禀尺度的选取问题,以数值算例证明了内禀尺度与材料晶格常数非常接近,晶格常数可近似用作微纳米力学中材料的内禀尺度参数。  相似文献   

3.
本文基于Levinson梁理论和单向耦合的非傅里叶热传导理论,在不同边界条件下研究了均匀微梁的热弹性阻尼(thermoelastic damping,TED)。忽略温度的轴向梯度引起的热流,给出了Levinson微梁横向自由振动的热弹性耦合微分方程,与微梁不考虑热弹性阻尼时的自由振动方程进行比较,从方程形式的相似性上得到了复频率的解析解,进而求得了代表微梁结构热弹性阻尼的逆品质因子。在此基础上,采用有限元方法计算了微梁结构考虑非傅里叶热传导时的逆品质因子,并将有限元结果和理论分析结果进行了对比验证。通过数值计算结果定量分析了微梁的几何尺寸、边界条件以及频率阶数对微梁热弹性阻尼的影响规律。计算结果表明:在不同频率阶数时,微梁的热弹性阻尼最大值不变,临界厚度均随着频率阶数的增大而减小;不同边界条件下微梁热弹性阻尼最大值对应的临界厚度随着支座约束刚度的增大而减小;忽略轴向的温度梯度引起的热流,在梁尺寸较小时会带来一定误差。  相似文献   

4.
将非局部弹性理论和应变梯度理论结合,再根据流体滑移边界理论,建立了考虑流体和固体小尺度效应的充流单壁碳纳米管(SWCNT)流固耦合动力学模型,分别以非局部应力效应、应变梯度效应和流体滑移边界效应模拟微观小尺度效应对系统的影响,推导得出充流单壁碳纳米管的Euler-Bernoulli梁波动控制方程。通过对控制方程的求解,分析材料不同类型尺度效应对充流碳纳米管的振动和波动特性影响。结果显示,应变梯度效应和流体边界效应对低频波动起促进作用,对高频波动起阻尼作用,应力非局部效应则对波动始终产生阻尼作用。三种尺度效应对低流速系统的振动有促进作用,而对高流速系统产生阻尼作用。  相似文献   

5.
基于非局部黏弹性理论,针对非局部阻尼欧拉梁在非局部黏弹性地基上的振动特性问题进行研究。首先通过引入广义Maxwell黏弹性模型、速度相关型外阻尼模型以及非局部黏弹性地基模型,建立了欧拉梁的振动控制方程。然后利用传递函数方法得到了不同边界条件下欧拉梁固有频率及相应模态振型的封闭解。通过与文献中已有研究结果进行对比验证了所建模型的正确性,并在此基础上分析了欧拉梁非局部参数、黏弹性参数、地基非局部参数、刚度及长度等影响因素对固有频率的影响情况。结果表明,所建的动力学模型及计算分析方法对解决非局部阻尼欧拉梁在非局部黏弹性地基支撑下的动力学问题准确有效。  相似文献   

6.
梁峰  包日东 《工程力学》2015,32(6):238-242
应用非局部粘弹性欧拉梁模型研究不同温度场中输送脉动流碳纳米管的热弹性参数振动稳定性问题。包含有小尺度项和热效应项的控制方程通过Galerkin法离散后,用平均法对其进行求解,得到了管道稳定性边界的解析表达式。利用数值算例分析各参数对稳定性边界的影响发现:纳米管在高温温度场中的参数振动稳定性要比低温场中降低很多;提高温度变化量和非局部参数值,在低温场中可以增强系统稳定性,而在高温场中却会降低系统稳定性;不论在高温还是低温场中,提高纳米管粘弹性系数都会增强系统稳定性,但在高温场中,管材粘弹性的这种作用会比在低温场中降低很多。该文结论可为输流纳米机械的结构设计和热弹性振动分析提供理论 基础。  相似文献   

7.
为分析多物理场下含双参数弹性基础压电功能梯度圆柱壳的自由振动特性,以含Pasternak-Winkler 弹性基础压电功能梯度圆柱壳为对象,采用1 阶剪切变形理论和Hamilton 变分原理推导多场作用下含弹性基础压电功能梯度圆柱壳的模态频率方程,讨论弹性基础参数、温度梯度、压电层的材料种类和功能梯度层的材料组分等对模态频率的影响。结果表明,模态频率随温度梯度的增大而减小,随陶瓷体积分数指数和弹性基础参数的增大而增大;选用BaTiO3时,圆柱壳的模态频率以及对温度梯度的敏感性均最大,而受外激励电压的影响最小;相较于外激励电压,温度梯度对模态频率影响较大。  相似文献   

8.
提出一种基于改进傅里叶级数的方法,对矩形薄板在任意边界条件下自由振动特性进行求解。通过将薄板振动的位移函数表示成二维傅里叶余弦级数和辅助级数的线性组合,克服传统傅里叶级数法中薄板位移函数边界处不连续的缺陷;基于位移函数列出矩形薄板拉格朗日方程,然后通过Hamilton原理求解得到矩形薄板自由振动频率与相应位移函数的系数。计算结果与文献及有限元解吻合良好,方法准确可靠;此外,通过改变边界约束弹簧刚度模拟任意边界条件;大量计算表明,固支边界条件与弹性边界条件组合中,随着固支边条界范围增大,矩形薄板无量纲频率参数呈增大趋势;简支及自由边界条件与弹性边界条件组合中,随着弹性边条界的增多,矩形薄板无量纲频率参数呈增大趋势。  相似文献   

9.
基于非局部弹性理论,给出非局部功能梯度铁摩辛科梁结构的控制微分方程。结合该研究提出的一种半解析数值法,对多种边界条件下非局部功能梯度梁结构自由振动特性进行分析;通过与现有文献简支梁的数据对比,验证该研究计算的正确性;同时分析非局部参数和功能梯度指数对梁结构的固有频率以及波传播特性的影响。结果表明,各个参数对梁结构固有频率以及波传播特性有不同程度的影响规律。  相似文献   

10.
罗秋阳  李成 《振动工程学报》2022,35(5):1118-1129
基于非局部应变梯度理论和Mindlin板理论,研究了热‐力‐电多场耦合下轴对称压电纳米圆板的振动特性。通过Hamilton原理推导了非局部应变梯度本构框架内的运动方程,采用微分求积法数值求解了理论模型微分方程组,分析了压电纳米圆板的振动固有频率受内尺度参数与外场参数的影响。压电纳米圆板的固有频率随着非局部参数的增大而减小,随着应变梯度特征参数的增大而增大。当非局部参数小于应变梯度特征参数时,纳米圆板表现出刚度硬化行为;当非局部参数大于应变梯度特征参数时,表现出刚度软化行为。当非局部参数等于应变梯度特征参数时,纳米圆板的刚度退化为相应的经典连续介质理论结果。此外,固有频率随着径向压力和正电压的增大而减小,随着径向拉力和负电压的增大而增大,随着温差的增加而小幅减小。特别地,研究发现当径向载荷和电压增大到一定程度时,纳米圆板出现了振动失稳现象,并分析了非局部参数与应变梯度特征参数对失稳临界径向载荷及临界电压的影响。  相似文献   

11.
A single-elastic beam model has been developed to analyze the thermal vibration of single-walled carbon nanotubes (SWCNT) based on thermal elasticity mechanics, and nonlocal elasticity theory. The nonlocal elasticity takes into account the effect of small size into the formulation. Further, the SWCNT is assumed to be embedded in an elastic medium. A Winkler-type elastic foundation is employed to model the interaction of the SWCNT and the surrounding elastic medium. Differential quadrature method is being utilized and numerical solutions for thermal-vibration response of SWCNT is obtained. Influence of nonlocal small scale effects, temperature change, Winkler constant and vibration modes of the CNT on the frequency are investigated. The present study shows that for low temperature changes, the difference between local frequency and nonlocal frequency is comparatively high. With embedded CNT, for soft elastic medium and larger scale coefficients (e0a) the nonlocal frequencies are comparatively lower. The nonlocal model-frequencies are always found smaller than the local model-frequencies at all temperature changes considered.  相似文献   

12.
This paper investigates the large-amplitude free vibration of a double-walled carbon nanotube (DWCNT) surrounded by an elastic medium in the presence of temperature change. Based on continuum mechanics, a nonlocal elastic beam model is employed in which nanotubes are coupled together via the van der Waals (vdW) interlayer interactions. The Pasternak foundation model and a nonlinear vdW model are utilized to describe the surrounding elastic medium effect and the vdW interlayer interactions, respectively. DWCNTs with different boundary conditions are analyzed utilizing the Timoshenko beam theory that considers the shear deformation and rotary inertia effects. The governing equations are derived from Hamilton’s principle; the Galerkin method is utilized to discretize the governing equations. The influences of the nonlocal parameter, spring constant, carbon nanotube aspect ratio, and temperature change on the nonlinear free vibration characteristics of a double-walled carbon nanotube with different boundary conditions are thoroughly investigated. It is deduced that the nonlocal parameter, spring constant, and the aspect ratio play significant roles for the value of the nonlinear frequency. Also, the temperature change and the type of boundary conditions have an effect on the nonlinear frequency.  相似文献   

13.
This article presents a nonlocal sinusoidal shear deformation beam theory (SDBT) for the nonlinear vibration of single-walled boron nitride nanotubes (SWBNNTs). The surrounding elastic medium is simulated based on nonlinear Pasternak foundation. Based on the nonlocal differential constitutive relations of Eringen, the equations of motion of the SWBNNTs are derived using Hamilton's principle. Differential quadrature method (DQM) for the nonlinear frequency is presented, and the obtained results are compared with those predicted by the nonlocal Timoshenko beam theory (TBT). The effects of nonlocal parameter, vibrational modes, length, and elastic medium on the nonlinear frequency of SWBNNTs are considered.  相似文献   

14.
This study presents an analytical method for the forced vibration of an elastically connected double-carbon nanotube system (DCNTS) carrying a moving nanoparticle based on the nonlocal elasticity theory. The two nanotubes are identical and are connected with each other continuously by elastic springs. The problem is also solved numerically by using the Galerkin method and the time integration method of Newmark to establish the reliability of the analytical method. Two sets of critical velocity exist for DCNTS. The closed-form solutions for the dynamic deflections of the two nanotubes are derived for these two sets of critical velocity for the first time in this study. The influences of the nonlocal parameter, aspect ratio, velocity of the moving nanoparticle and the elastic layer between the nanotubes on the dynamic responses are discussed. The study shows that the dynamic behavior of the double-carbon nanotube system is greatly influenced by the nonlocal effects. The dynamic deflections predicted by the classical theory are always smaller than those predicted by the nonlocal theory due to the nonlocal effects. Thus, the classical beam models are not suitable in modeling carbon nanotubes with small aspect ratio, and nonlocal effects should be taken into account. Furthermore, the velocity of the nanoparticle and the stiffness of the elastic layer have significant effects on the dynamic behavior of DCNTS.  相似文献   

15.
In the present study, the surface effect on the forced vibration of a double, single-walled carbon nanotube system (DSWNTS) under excitation of a moving nanoparticle is analyzed based on the modified nonlocal elasticity theory. The nanotube surroundings are modeled by an elastic medium and it is assumed that two nanotubes are connected to each other continuously, using elastic springs. In a parametric study, influences of the nonlocal parameter, velocity of the moving nanoparticle, the elastic layer between the nanotubes, and the order of derivative on dynamic responses of the DSWNTS are investigated in detail. The results demonstrate that the variation of order of derivative affects dynamic deflection and frequency of DSWNTS considerably. In this study, the influences of additional terms in nonlocal theory and improving the accuracy of results by presenting a modified version of nonlocal elasticity theory is investigated. As the results have presented, there is a noticeable difference in comparison with a previous case and this issue certifies the importance of the presented work. Also, a general and exact validation has been performed on the results, differences percentages have been observed, and effective factors on these differences have been reported.  相似文献   

16.
Many experimental observations have shown that most nanostructures, such as carbon nanotubes, are often characterized by a certain degree of waviness along their axial direction. This geometrical imperfection has profound effects on the mechanical behavior of carbon nanotubes. In the present work, stability of a slightly curved carbon nanotube under lateral loading is investigated based on Eringen's nonlocal elasticity theory. Euler Bernoulli and Timoshenko beam theories are employed to obtain equilibrium equations. Winkler-Pasternak elastic foundation is used to approximate the effect of matrix. Effects of initial curvature, nonlocal parameter, beam length, and elastic foundation parameters on initiation of critical conditions are investigated.  相似文献   

17.
Based on nonlocal theory of thermal elasticity mechanics, a nonlocal elastic Timoshenko beam model is developed for free vibration analysis of zigzag single-walled carbon nanotube (SWCNT) considering thermal effect. The nonlocal constitutive equations of Eringen are used in the formulations. The equivalent Young’s modulus and shear modulus for zigzag SWCNT are derived using an energy-equivalent model. Results indicate significant dependence of natural frequencies on the temperature change as well as the chirality of zigzag carbon nanotube. These findings are important in mechanical design considerations of devices that use carbon nanotubes.  相似文献   

18.
Employing the variational differential quadrature (VDQ) method, the effects of initial thermal loading on the vibrational behavior of embedded single-walled carbon nanotubes (SWCNTs) based on the nonlocal shell model are studied. According to the first-order shear deformation theory and considering Eringen's nonlocal elasticity theory, the energy functionality of the system is presented and discretized using the VDQ method. The effects of thermal loading and elastic foundation are simultaneously taken into account. The use of the numerical discretization technique in the context of variational formulation reduces the order of differentiation in the governing equations and consequently improves the convergence rate. The accuracy of the present model is first checked by comparison with molecular dynamics simulation results and those of other methods. The effects of involved parameters are then investigated on the fundamental frequencies of thermally preloaded embedded SWCNTs. The results imply that the thermal loading has a significant effect on the vibration analysis of embedded SWCNTs.  相似文献   

19.
In this paper, the small size effect on the free vibration behavior of finite length nanotubes embedded in an elastic medium is investigated. The problem is formulated based on the three-dimensional (3D) nonlocal elasticity theory. Since the 3D nonlocal constitutive relations in a cylindrical coordinate system are used, in addition to displacement components, the stress tensor components are chosen as degrees of freedom. The surrounding elastic medium is modeled as the Winkler’s elastic foundation. The differential quadrature method as an efficient and accurate numerical tool in conjunction with the series solution is used to discretize the governing equations. Very fast rate of convergence of the method is demonstrated. The effects of the nonlocal parameter together with the other geometrical parameters and also the stiffness parameter of the elastic medium on the natural frequencies are studied.  相似文献   

20.
In the present study, the torsional vibration behavior of double walled carbon nanotubes (DWCNTs) is investigated using nonlocal elasticity theory. The effects of van der Waals Force interaction, nanotube length and nonlocal parameter are studied in detail. Two frequency set are obtained for DWCNTs for a given half wave number. It is also shown that some mode shapes are anti-phase and some of them are in-phase. The present results can be useful in design of nano electromechanical systems like nanobearings and rotary servomotors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号