首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of fibers with desired drug release properties has gained a high research interest for water-soluble drugs with controlled drug delivery systems obtained by coaxial electrospinning technique. The objective of this study is to achieve the controlled-release of doxycycline hyclate (DOXH) from the fabricated electrospun fibers. In this case, three different electrospun core/shell fibers have been successfully fabricated using this technique and the model drug, DOXH, has been entrapped in the core layers. The results of the structural properties and in vitro release studies have been compared with electrospun monostructural fibers fabricated by conventional electrospinning technique. Scanning electron microscopy and transmission electron microscopy images have proved that the fabricated electrospun fibers have core/shell structures. Fourier transform infrared spectroscopy has shown convenient interaction and compatibility between polymers and the model drug. X-ray diffraction analysis has revealed that all the encapsulated DOXH are transferred into amorphous physical state and lost its crystalline state in the fibers. Moreover, drug release studies have demonstrated that the electrospun core/shell fibers show a better-controlled release than the monostructural fibers. It can be concluded that the fibers obtained by blending hydrophilic and hydrophobic polymers such as poly(ε-caprolactone) and poly(ethylene oxide) in both shell and core sides are promising candidate for controlled drug release.  相似文献   

2.
Use of Poly(ε-caprolactone) (PCL) as 3D porous scaffold, fibers and matrices has proved importance of this polymer in applications for tissue engineering besides others. Here we present an approach to generate uneven surfaced meshes of PCL via emulsion electrospinning with minimal use of organic solvent. Poly(vinyl alcohol) (PVA) was used as template polymer providing stability and alignment to PCL phase during electrospinning of oil-in-water emulsion of PCL. The emulsion properties including particle size, inter-particle distance and viscosity depended on the concentrations of PCL and PVA. Higher PVA content led to formation of smaller oil phase particles resulting into higher viscosity of the emulsion while a higher PCL content led to the formation of larger oil phase particles and correspondingly lower viscosity of the emulsion. A correlation between particle size of emulsion and diameter of the fibers obtained after electrospinning was found. The composite meshes of PCL-PVA obtained via emulsion electrospinning were washed with water to generate uneven surface on the meshes which was found to be highly favorable for cell growth in comparison to a uniform mesh of PCL made via solution electrospinning.  相似文献   

3.
Laser melt electrospinning is a novel technology to produce nonwoven scaffolds for tissue engineering (TE) applications. This solvent-free process is far safer than common solution electrospinning. In this paper, we demonstrated the poly(?-caprolactone) (PCL) fibers diameters could be governed from 3 to 12 μm with changing electrospinning parameters. The various diameters can meet the needs of scaffold properties such as porosity, pore size, etc. Our experiential results also showed that the fibers diameter tended to decrease as laser current increased. The degradation of PCL molecular chains often occurs in the melt electrospinning process due to mechanical scission and thermal degradation. The crystallinity of as-spun PCL fibers was approximately equal to that of the annealing fibers by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). In our experiential, the collected PCL electrospun fibers often fused together to form a three-dimension network structure, which is favorable to mechanical properties.  相似文献   

4.
Poly(vinyl chloride)/poly(ε-caprolactone)/poly(ε-caprolactone)-b-poly(dimethylsiloxane) [PVC/PCL/(PCL-b-PDMS)] blends were prepared by solvent casting from tetrahydrofuran. The content of PVC was kept constant (60 wt%); the PCL and PCL-b-PDMS contents were varied by replacing different amounts of PCL [0–20 wt% from the PVC/PCL (60/40) blend] with PCL-b-PDMS copolymer having different molecular weights of the PCL blocks. The thermal properties of prepared blends were investigated by differential scanning calorimetry in order to analyse miscibility (through glass transition temperature) and crystallinity. Differential scanning calorimetry analyses show that the PVC/PCL/PCL-b-PDMS blends are multi-phase materials which contain a PVC plasticized with PCL phase, a block copolymer PCL-b-PDMS phase (with crystalline and amorphous PCL and PDMS domains) and a PCL phase (preponderantly crystalline).  相似文献   

5.
Non-covalently bonded crystalline inclusion compounds (ICs) have been formed by threading host cyclic starches, α-cyclodextrins (α-CDs), onto guest poly(ε-caprolactone) (PCL) chains and by co-crystallization of guest PCL and host urea (U). PCLs were coalesced from both ICs by appropriate removal of the α-CD and U hosts. When added at low concentrations, PCL coalesced from its α-CD–IC served as an effective self-nucleating agent for the bulk crystallization of as-received PCL from the melt. Film sandwiches consisting of two layers of as-received (asr) (control), and one layer each of asr and self-nucleated (nuc) (composite) PCLs were produced by melt pressing. A composite sandwich consisting of a film of neat PCL coalesced from its U–IC (c-PCL) and a film of asr-PCL was also melt pressed. DSC showed that both composite films maintain their characteristic structures and properties even after melt-pressing them together. Both single component film sandwiches exhibited strong interfaces and better mechanical properties than the asr-PCL/asr-PCL control composite sandwiches. These results are similar to those previously obtained on similarly prepared nylon-6 (N-6) sandwich composites made with asr- and nuc-N-6 films with the same levels of crystallinity. However, while the elongation at break was greatly reduced in the asr-N-6/nuc-N-6 composite, asr-/asr-, asr-/c-, and asr-/nuc-, PCL/PCL-composites all showed similarly large elongations at break. The above room temperature and well below room temperature glass-transition temperatures of N-6 and PCL are likely the cause of their widely different elongations at break.  相似文献   

6.
In order to increase the miscibility in the blend of poly(β-hydroxybutyrate) [PHB] and poly(ε-caprolactone) [PCL], PHB/PCL copolyesters were used as compatibilizers. These PHB/PCL copolyesters were synthesized by transesterification in solution phase. The melting point [Tm] depression, which was not observed in PHB/PCL blend without compatibilizer, was observed when PHB/PCL copolyesters as compatibilizers were added to the PHB/PCL blend system. As the amount of compatibilizer added to the blend increased, the crystallization temperature [Tc] of PCL in the blend increased and Tc of PHB in the blend decreased. The difference in Tc between PHB and PCL was gradually reduced. When the sequence length of PHB block and PCL block in the PHB/PCL copolyester increased, the miscibility of the blend increased. This is evidenced by the depression in the Tm of PHB and PCL in the blend and by the decrease in the difference of Tc between PHB and PCL. From the polarizing optical micrographs, the phase separation in PHB/PCL blend was observed. However, in the presence of PHB/PCL copolyester, the spherulite of PHB grows in equilibrium with one phase melt. Received: 27 July 1998/Revised version: 12 October 1998/Accepted: 4 November 1998  相似文献   

7.
Summary Rheological properties of poly(-caprolactone) (PCL) and Poly (styrene-co-acrylonitrile) (SAN) blends were examined as a function of the acrylonitrile (AN) content in SAN, to systematically understand the correlation between the interaction parameter and the theological properties of miscible polymer blends. When the plateau modulus (G N 0) and zero shear viscosity ( 0) of the PCL/SAN blends are plotted against the AN content in SAN, a minimum is observed. Qualitatively, the results obtained parallel the variation of the interchain interaction with the AN content. The negative deviation ofG N 0 and 0 from linearity seems to be attributed to the increase in the entanglement molecular weight between dissimilar chains which results from the chain extension caused by interchain interaction.  相似文献   

8.
We produced highly aligned porous poly(ε-caprolactone) (PCL)/hydroxyapatite (HA) scaffolds by unidirectionally freezing PCL/HA solutions with various HA contents (0, 5, 10 and 20 wt% in relation to the PCL polymer) and evaluated their mechanical properties and in vitro biocompatibility to examine their potential applications in bone tissue engineering. All the prepared scaffolds had a highly aligned porous structure, in which the HA particles were uniformly dispersed in the PCL walls. The elastic modulus of the PCL/HA scaffolds significantly increased from 0.12 ± 0.02 to 2.65 ± 0.05 MPa with increasing initial HA content from 0 to 20 wt%, whereas the pore size decreased from 9.2 ± 0.7 to 4.2 ± 0.8 μm. In addition, the PCL/HA scaffolds showed considerably enhanced in vitro cellular responses that were assessed in terms of cell attachment, proliferation and osteoblastic differentiation.  相似文献   

9.
Summary A novel well-defined macromonomer consisting of different types of monomers in polymerization mechanisms was synthesized for the first time through the SmI2-induced transformation. The macromonomer, -methacryloylpoly-(tetrahydrofuran-b--caprolactone), was prepared by the reaction of methacryloyl chloride with living poly(tetrahydrofuran-b--caprolactone) [poly(THF-b-CL)] which was obtained by the two-electron reduction of the cationic growing center of poly(THF) by samarium iodide (SmI2) followed by the polymerization of CL. 1H NMR analysis indicated the quantitative introduction of the methacryloyl group onto the polymer end. The molecular weight distribution of the macromonomer was relatively narrow, and the unit ratio of THF to CL could be controlled by both polymerization time of THF and the amount of CL, resulting from the living nature of both CL- and THF-polymerizations. Radical copolymerization of the produced macromonomers with methyl methacrylate in the presence of AIBN resulted in a polymethacrylate backbone grafted with poly(THF-b-CL) block copolymers.  相似文献   

10.
The ultimate goal of tissue engineering serves to repair, restore damaged tissue or organ due to accident or disease. In this research, we are aimed at investigating the feasibility of processing cyclic type polylactic acid (PDLLA)/poly(ε-caprolactone) (PCL)/hydroxyapatite (HA) biomaterial into tissue engineering scaffold (TES) with variable mechanical properties, well interconnected pore architecture, and controlled hydrophilicity. For this, an in-house built bone scaffold 3D printing (BS3P) system was applied to two biomaterials, namely PDLLA-PCL and HA-PCL. These two biomaterials were produced by optimizing the robotic control system. Morphological investigation by scanning electron microscope (SEM) revealed both TES formed by new materials able to show honeycomb-like architectures, excellent fusion at the filament junctions, high uniformity, complete interconnectivity, and controlled channel characteristics of the TES. Compression tests align with the typical behavior of a porous material undergoing deformation. In vitro cell culture study and confocal laser microscopy (CLM) showed enhanced cell adhesion, proliferation, and extracellular matrix (ECM) formation. The results demonstrated the eligibility of the BS3P system to produce TES, and the suitability of the new biomaterial scaffolds in enhancing cell biocompatibility.  相似文献   

11.
Nanocomposites of poly(ε-caprolactone) (PCL) and tungsten trioxide (WO3) were prepared by solvent casting using 5 and 10% of WO3 nanoparticles. The nanocomposites were characterized using several analytical techniques such as XRD, SEM, thermal analysis (TGA and DSC), spectroscopic methods (FTIR and UV/Vis) to gather information on the modifications introduced by WO3. Photodegradation of PCL/WO3 nanocomposites was studied exposing the samples to a Xenon lamp, which simulates the UV spectrum of the sun. The results obtained showed that due to the incorporation of WO3 nanoparticles, the nanocomposites exhibit higher thermal stability together with higher photodegradation efficiency.  相似文献   

12.
Dielectric and thermal characterization of nanohybrid films based on poly(ε-caprolactone) biopolymer were investigated. Nano-composites samples with distinct loadings of halloysite nanotubes (HNT) were prepared by in situ Ring Opening Polymerisation of ε-caprolactone. The effect of the incorporated HNT on the molecular relaxation process and interfacial polarization of PCL was studied via broadband dielectric spectroscopy (BDS) on a frequency domain starting from 1E-1 to 1E6 Hz and at temperatures ranging from −70°C to 50°C. The BDS measurements revealed four significant dielectric processes α-primary relaxation attributed to glass transition, β-secondary relaxation and two interfacial polarizations due to the semi-crystalline character of PCL and the added HNT fillers. According to our results, the weight ratio of HNT ranging between 3% and 5% is recommended for achieving the highest performing nanocomposite that can be used in several applications.  相似文献   

13.
The effect of accelerated weathering degradation on the properties of poly(lactic acid) (PLA)/poly(ε-caprolactone) (PCL) blends and PLA/PCL/titanium (IV) dioxide (TiO2) nanocomposites are presented in this paper. The results show that both polymers are susceptible to weathering degradation, but their degradation rates are different and are also influenced by the presence of TiO2 in the samples. Visual, microscopic and atomic force microsocpy observations of the surface after accelerated weathering tests confirmed that degradation occurred faster in the PLA/PCL blends than in the PLA/PCL/TiO2 nanocomposites. The X-ray diffraction results showed the degradation of PCL in the disappearance of its characteristic peaks over weathering time, and also confirmed that PLA lost its amorphous character and developed crystals from the shorter chains formed as a result of degradative chain scission. It was further observed that the presence of TiO2 retarded the degradation of both PLA and PCL. These results were supported by the differential scanning calorimetry results. The thermogravimetric analysis results confirmed that that PLA and PCL respectively influenced each other's thermal degradation, and that TiO2 played a role in the thermal degradation of both PLA and PCL. The tensile properties of both PLA/PCL and PLA/PCL/TiO2 were significantly reduced through weathering exposure and the incorporation of TiO2.  相似文献   

14.
《Polymer》2014,55(26):6686-6695
To improve the form-stability and lower the degradation rate of poly(trimethylene carbonate) (PTMC) in biomedical fields, the cross-linked PTMC networks (PTMC-Ns) with controllable properties were prepared via chemical cross-linking. We report higher gel percentage and lower swelling degree as well as enhanced thermal and mechanical properties of the PTMC-Ns by increasing the initial molecular weight and by increasing the cross-linker amount. The PTMC-Ns cross-linked by bis(trimethylene carbonate) (BTB) had similar properties to that of counterparts cross-linked by 2, 2-bis(ε-CL-4-yl)-propane (BCP), indicating that BTB can be used interchangeably with BCP. Through in vitro enzymatic degradation, the 0.05 mol% BTB cross-linked PTMC with an initial molecular weight of 256 kDa displayed a mass loss of 34% and an erosion rate of 6.94 μm/d after 12 weeks—this was markedly slower than that of the uncross-linked samples. The PTMC-Ns have potential as biomedical implants because of their better form-stability and lower erosion rate than that of PTMC.  相似文献   

15.
Different ratios of poly(ε-caprolactone) (PCL) and gelatinwere used to fabricate scaffolds for regeneration of retinal pigment epithelium (RPE) layer. Physical and chemical characterizations were performed and the behavior of human RPE cells on the scaffolds was evaluated subsequently. An increase in gelatin content in the scaffold enhanced hydrophilicity, RPE cell attachment, proliferation, and spreading over PCL scaffolds. Granular and cytoplasmic expressions of RPE65 and Cytokeratin 8/18 markers confirmed the presence of RPE cells. It was believed that PCL/gelatin scaffolds could be used as substrates to replace RPE extracellular matrix to facilitate regeneration of RPE layer in retinal diseases.  相似文献   

16.
Polymers capable of reversible “two-way” shape memory behaviour are of great interest for applications where reversible actuation is demanded, and semicrystalline crosslinked systems have been indicated as an interesting solution towards this end. In this work we have explored the two-way shape memory response of semicrystalline poly(ε-caprolactone)-based polymer networks, prepared with various macromolecular architectures starting from linear, three- and four-arm star poly(ε-caprolactone) functionalized with methacrylate end-groups. All the materials have revealed two-way shape memory capabilities. The effect arises from an elongation process that takes place when the material is cooled under an applied load below the crystallization temperature, and that is completely reversed when heated again above melting temperature, in a manner that strongly depends on the applied load and on the material crosslink density. Two-dimensional XRD analysis, carried out on elongated specimens, shows that the elongation on cooling is accompanied by a change in the crystallinity orientation along the direction of stretch.  相似文献   

17.
The physical and mechanical properties of poly(l-lactide)/poly(??-caprolactone) (PLLA/PCL) blends reinforced with multiwalled carbon nanotubes (MWCNTs) before and after in vitro degradation were investigated. Because of brittleness, PLLA needs to be plasticized by PCL as a soft polymer. The MWCNTs are used to balance the stiffness and the flexibility of PLLA/PCL blends. The results showed that with incremental increase in concentration of MWCNTs in composites, the agglomerate points of MWCNTs were increased. The physical and mechanical properties of prepared PLLA/PCL blends and MWCNT/PLLA/PCL nanocomposites were characterized. The X-ray diffraction analysis of the prepared blends and composites showed that MWCNTs, as heterogeneous nucleation points, increased the lamella size and therefore the crystallinity of PLLA/PCL. The mechanical strength of blends was decreased with incremental increase in PCL weight ratio. The mechanical behavior of composites showed large strain after yielding and high elastic strain characteristics. The tensile tests results showed that the tensile modulus and tensile strength are significantly increased with increasing the concentration of MWCNTs in composites, while, the elongation-at-break was decreased. The in vitro degradation rate of polymer blends in phosphate buffer solution (PBS) increased with higher weight ratio of PCL in the blend. The in vitro degradation rate of nanocomposites in PBS increased about 65% when the concentration of MWCNTs increased up to 3% (by weight). The results showed that the degradation kinetics of nanocomposites for scaffolds can be engineered by varying the contents of MWCNTs.  相似文献   

18.
Polymer micelles containing calcium phosphate (CaP) minerals on the shell domain were developed by nanotemplate-driven mineralization. The polymer micelle nanotemplate was prepared by self-assembly of a poly(ε-caprolactone)-b-poly(methacrylic acid) (PCL-b-PMAA) copolymer. PMAA formed the anionic outer shell, and PCL constructed the hydrophobic inner core. Subsequent addition of calcium and phosphate ions to micellar solutions induced CaP mineral deposition within the PMAA shell domain. Transmission electron microscopy (TEM) showed the well-defined nanostructure consisting of the CaP nanoshell and the PCL inner core. Energy-dispersive X-ray spectroscopy (EDS) confirmed CaP deposition on polymer micelles. Dynamic light scattering (DLS) study showed CaP mineralization greatly enhanced the micellar stability.  相似文献   

19.
Jianwen Xu 《Polymer》2006,47(14):5161-5173
A series of silsesquioxane-based hybrid star poly(ε-caprolactone) with different arm length (SHPCL-4, SHPCL-10, SHPCL-40) were synthesized from ring-opening polymerisation of ε-caprolactone as a monomer initiated by silsesquioxane-based hybrid polyol (SBOH). Two linear poly(ε-caprolactone)s, LPCL-25 and LPCL-35, were also prepared for comparison. The sequence of LPCL-25<LPCL-35<SHPCL-4<SHPCL-10<SHPCL-40 for total molecular weights (Mn) and the sequence of SHPCL-4<SHPCL-10<LPCL-25<LPCL-35<SHPCL-40 for average molecular weight per arm were determined by 1H NMR and GPC measurements. The 1H NMR data also suggested that SHPCLs possess a spheric architecture with 29.2 arms in average. The crystallization kinetics study by non-isothermal DSC showed that the starting temperature of crystallization (Ts), the ending temperature (Te) and the peak temperature of exothermic curve (Tp) are in the order as: SHPCL-4<SHPCL-10<LPCL-25<SHPCL-40≈LPCL-35, while the crystallinity (Xc) follows the order of SHPCL-4<SHPCL-10<SHPCL-40<LPCL-25<LPCL-35. The corrected overall crystallization rate constant (Kc) calculated from Avrami equation were found to be in the order as: SHPCL-4<SHPCL-10<LPCL-35<LPCL-25≈SHPCL-40, which was further evidenced by the real time morphological observation with polarized light microscopy (POM). It is also found by the POM measurements that the inorganic core and star architecture greatly retards the nucleation of SHPCLs with short arms, while it helps the nucleation of SHPCL with longer arms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号