首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the entanglement between the internal (spin) and external (position) degrees of freedom of the one-dimensional discrete time quantum walk starting from local and delocalized initial states whose time evolution is driven by Hadamard and Fourier coins. We obtain the dependence of the asymptotic entanglement with the initial dispersion of the state and establish a way to connect the asymptotic entanglement between local and delocalized states. We find out that the delocalization of the state increases the number of initial spin states which achieves maximal entanglement from two states (local) to a continuous set of spin states (delocalized) given by a simple relation between the angles of the initial spin state. We also carry out numerical simulations of the average entanglement along the time to confront with our analytical results.  相似文献   

2.
We consider a d-dimensional random quantum walk with site-dependent random coin operators. The corresponding transition coefficients are characterized by deterministic amplitudes times independent identically distributed site-dependent random phases. When the deterministic transition amplitudes are close enough to those of a quantum walk which forbids propagation, we prove that dynamical localization holds for almost all random phases. This instance of Anderson localization implies that all quantum mechanical moments of the position operator are uniformly bounded in time and that spectral localization holds, almost surely.  相似文献   

3.
We consider discrete-time nearest-neighbor quantum walks on random environments in one dimension. Using the method based on a path counting, we present both quenched and annealed weak limit theorems for the quantum walk.  相似文献   

4.
5.
We review the criteria for separability and quantum entanglement, both in a bipartite as well as a multipartite setting. We discuss Bell inequalities, entanglement witnesses, entropic inequalities, bound entanglement and several features of multipartite entanglement. We indicate how these criteria bear on the experimental detection of quantum entanglement.  相似文献   

6.
We introduce a family of discrete-time quantum walks, called two-partition model, based on two equivalence-class partitions of the computational basis, which establish the notion of local dynamics. This family encompasses most versions of unitary discrete-time quantum walks driven by two local operators studied in literature, such as the coined model, Szegedy’s model, and the 2-tessellable staggered model. We also analyze the connection of those models with the two-step coined model, which is driven by the square of the evolution operator of the standard discrete-time coined walk. We prove formally that the two-step coined model, an extension of Szegedy model for multigraphs, and the two-tessellable staggered model are unitarily equivalent. Then, selecting one specific model among those families is a matter of taste not generality.  相似文献   

7.
We define a random walk in a data set of a metric space. In order that the random walk depends on the pattern of the data, restrictions are imposed during its generation. Since such a restricted random walk investigates only a local subset of the data, a series of random walks has to be realized for describing the entire data set. An agglomerative graph-related classification method is introduced whose hierarchy is based on these restricted random walks. It is demonstrated on various examples that this new technique is able to detect efficiently clusters of different shapes without specifying the number of groups in advance.  相似文献   

8.
9.
We develop a generalized teleportation scheme based on quantum walks with two coins. For an unknown qubit state, we use two-step quantum walks on the line and quantum walks on the cycle with four vertices for teleportation. For any d-dimensional states, quantum walks on complete graphs and quantum walks on d-regular graphs can be used for implementing teleportation. Compared with existing d-dimensional states teleportation, prior entangled state is not required and the necessary maximal entanglement resource is generated by the first step of quantum walk. Moreover, two projective measurements with d elements are needed by quantum walks on the complete graph, rather than one joint measurement with \(d^2\) basis states. Quantum walks have many applications in quantum computation and quantum simulations. This is the first scheme of realizing communicating protocol with quantum walks, thus opening wider applications.  相似文献   

10.
Based on the von Neumann entropy, we give a computational formalism of the quantum entanglement dynamics in quantum channels, which can be applied to a general finite systems coupled with their environments in quantum channels. The quantum entanglement is invariant in the decoupled local unitary quantum channel, but it is variant in the non-local coupled unitary quantum channel. The numerical investigation for two examples, two-qubit and two-qutrit models, indicates that the quantum entanglement evolution in the quantum non-local coupling channel oscillates with the coupling strength and time, and depends on the quantum entanglement of the initial state. It implies that quantum information loses or gains when the state of systems evolves in the quantum non-local coupling channel.  相似文献   

11.
Through introducing discrete-time quantum walks on the infinite line and on circles, we present a kind of two-particle interacting quantum walk which has two kinds of interactions. We investigate the characteristics of this kind of quantum walk and the time evolution of the two particles. Then we put forward a kind of quantum Hash scheme based on two-particle interacting quantum walks and discuss their feasibility and security. The security of this kind of quantum Hash scheme relies on the infinite possibilities of the initial state rather than the algorithmic complexity of hard problems, which will greatly enhance the security of the Hash schemes.  相似文献   

12.
We propose a new framework for image segmentation using random walks where a distance shape prior is combined with a region term. The shape prior is weighted by a confidence map to reduce the influence of the prior in high gradient areas and the region term is computed with k-means to estimate the parametric probability density function. Then, random walks is performed iteratively aligning the prior with the current segmentation in every iteration. We tested the proposed approach with natural and medical images and compared it with the latest techniques with random walks and shape priors. The experiments suggest that this method gives promising results for medical and natural images.  相似文献   

13.
Motion planning using adaptive random walks   总被引:1,自引:0,他引:1  
We propose a novel single-shot motion-planning algorithm based on adaptive random walks. The proposed algorithm turns out to be simple to implement, and the solution it produces can be easily and efficiently optimized. Furthermore, the algorithm can incorporate adaptive components, so the developer is not required to specify all the parameters of the random distributions involved, and the algorithm itself can adapt to the environment it is moving in. Proofs of the theoretical soundness of the algorithm are provided, as well as implementation details. Numerical comparisons with well-known algorithms illustrate its effectiveness.  相似文献   

14.
Quantum versions of random walks on the line and the cycle show a quadratic improvement over classical random walks in their spreading rates and mixing times, respectively. Non-unitary quantum walks can provide a useful optimisation of these properties, producing a more uniform distribution on the line, and faster mixing times on the cycle. We investigate the interplay between quantum and random dynamics by comparing the resources required, and examining numerically how the level of quantum correlations varies during the walk. We show numerically that the optimal non-unitary quantum walk proceeds such that the quantum correlations are nearly all removed at the point of the final measurement. This requires only O(logT)O(logT) random bits for a quantum walk of TT steps.  相似文献   

15.
We review the main aspects of a recent approach to quantum walks, the CGMV method. This method proceeds by reducing the unitary evolution to canonical form, given by the so-called CMV matrices, which act as a link to the theory of orthogonal polynomials on the unit circle. This connection allows one to obtain results for quantum walks which are hard to tackle with other methods. Behind the above connections lies the discovery of a new quantum dynamical interpretation for well known mathematical tools in complex analysis. Among the standard examples which will illustrate the CGMV method are the famous Hadamard and Grover models, but we will go further showing that CGMV can deal even with non-translation invariant quantum walks. CGMV is not only a useful technique to study quantum walks, but also a method to construct quantum walks à la carte. Following this idea, a few more examples illustrate the versatility of the method. In particular, a quantum walk based on a construction of a measure on the unit circle due to F. Riesz will point out possible non-standard behaviours in quantum walks.  相似文献   

16.
17.
In this study, the spin-momentum correlation of one massive spin- ${\frac{1}{2}}$ and spin-1 particle states, which are made based on the projection of a relativistic spin operator into timelike direction is investigated. It is shown that by using Non-Linear entanglement witnesses (NLEWs), the effect of Lorentz transformation would decrease both the amount and the region of entanglement.  相似文献   

18.
In this paper, we consider discrete time quantum walks on graphs with coin, focusing on the decentralized model, where the coin operation is allowed to change with the vertex of the graph. When the coin operations can be modified at every time step, these systems can be looked at as control systems and techniques of geometric control theory can be applied. In particular, the set of states that one can achieve can be described by studying controllability. Extending previous results, we give a characterization of the set of reachable states in terms of an appropriate Lie algebra. Controllability is verified when any unitary operation between two states can be implemented as a result of the evolution of the quantum walk. We prove general results and criteria relating controllability to the combinatorial and topological properties of the walk. In particular, controllability is verified if and only if the underlying graph is not a bipartite graph and therefore it depends only on the graph and not on the particular quantum walk defined on it. We also provide explicit algorithms for control and quantify the number of steps needed for an arbitrary state transfer. The results of the paper are of interest in quantum information theory where quantum walks are used and analyzed in the development of quantum algorithms.  相似文献   

19.
In this paper we analyze the behavior of quantum random walks. In particular, we present several new results for the absorption probabilities in systems with both one and two absorbing walls for the one-dimensional case. We compute these probabilities both by employing generating functions and by use of an eigenfunction approach. The generating function method is used to determine some simple properties of the walks we consider, but appears to have limitations. The eigenfunction approach works by relating the problem of absorption to a unitary problem that has identical dynamics inside a certain domain, and can be used to compute several additional interesting properties, such as the time dependence of absorption. The eigenfunction method has the distinct advantage that it can be extended to arbitrary dimensionality. We outline the solution of the absorption probability problem of a (D−1)-dimensional wall in a D-dimensional space.  相似文献   

20.
The analysis of complex networks is of major interest in various fields of science. In many applications we face the challenge that the exact topology of a network is unknown but we are instead given information about distances within this network. The theoretical approaches to this problem have so far been focusing on the reconstruction of graphs from shortest path distance matrices. Often, however, movements in networks do not follow shortest paths but occur in a random fashion. In these cases an appropriate distance measure can be defined as the mean length of a random walk between two nodes — a quantity known as the mean first hitting time.In this contribution we investigate whether a graph can be reconstructed from its mean first hitting time matrix and put forward an algorithm for solving this problem. A heuristic method to reduce the computational effort is described and analyzed. In the case of trees we can even give an algorithm for reconstructing graphs from incomplete random walk distance matrices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号