共查询到20条相似文献,搜索用时 31 毫秒
1.
针对结构复杂的螺栓连接及螺栓受力的复杂性,提出一种新的计算螺栓疲劳寿命的方法.本文通过有限元建模对某MW级风力发电机组塔筒法兰螺栓进行强度分析,并对应力最大螺栓进行分布加载计算;在MATLAB/simulink中对计算结果进行编程运算,拟合出螺栓载荷应力曲线;采用雨流计数法对载荷谱进行处理,结合材料的S-N曲线在Palmgrem-Miner理论准则下,并借助于MSC.Fatigue软件计算得到螺栓的疲劳寿命.同时应用Schmidt-Neuper理论及VD12230对螺栓疲劳寿命进行校核验证,得出这种新的螺栓疲劳方法的合理性. 相似文献
2.
针对风电齿轮箱联接螺栓疲劳受载复杂性问题,建立含螺栓的风电齿轮箱有限元模型,分析不同扭转和弯曲载荷下螺栓应力变化规律,依据风力发电机实际载荷谱,分段插值获得螺栓疲劳应力谱;基于雨流计数方法和Palmgrem-Miner疲劳累积损伤理论,结合螺栓材料S-N曲线,预测各疲劳应力谱下螺栓疲劳损伤,研究风电齿轮箱三种疲劳工况下各不同联接螺栓的疲劳寿命。结果表明:各疲劳工况下,前箱体与一级内齿圈间联接螺栓疲劳损伤值较大,疲劳弯矩工况下达最大损伤值0.853;疲劳扭矩工况下螺栓应力随扭矩增大而增大,危险螺栓靠近箱体两侧支撑处;疲劳弯矩工况下箱体产生倾覆效应,M_Y弯矩下危险螺栓位于箱体上下两侧,M_Z弯矩下危险螺栓位于箱体左右两侧。此次研究工作对提高风电齿轮箱整体使用寿命具有重要意义。 相似文献
3.
4.
应用接触有限元方法对螺栓联接结构进行模拟分析,详细计算了螺纹联接第一牙根处应力应变值,得出不同预紧力下的疲劳寿命,依据预紧力-寿命曲线可以指导生产实际,求得最佳预紧力。依螺栓联接变形图,从理论上定性分析了疲劳寿命随预紧力的变化关系,结果表明理论分析与有限元分析的结论是一致的。 相似文献
5.
6.
7.
利用ANSYS软件对连杆螺栓进行静力学分析,得出其应力集中的位置,根据Weibull分布概率密度函数计算了连杆螺栓的等效应力幅。分别采用Miner疲劳损伤理论和ANSYS软件中的疲劳分析模块计算连杆螺栓的疲劳寿命,通过计算表明两种方法的计算结果基本上是一致的。 相似文献
8.
9.
高强度螺栓的疲劳断裂分析 总被引:1,自引:0,他引:1
本文在综合考虑螺纹之间的相互干涉作用以及螺纹升角的影响之后,建立了高强度螺栓裂纹尖端应力强度因子 k_1表达式。在此基础上,将概率断裂力学的原理和方法引入高强度螺栓的疲劳断裂分新中,解决了高强度螺栓断裂韧性较分散等实际问题。 相似文献
10.
11.
12.
13.
低幅载荷对汽车前轴疲劳寿命影响的试验研究 总被引:14,自引:2,他引:14
为了探讨基于载荷特性的汽车结构件轻量化设计理论与方法,采用汽车前轴实物物理试验的方法,比较系统地研究某汽车前轴在低幅交变载荷作用下结构疲劳寿命的变化趋势,发现在低于疲劳极限的低幅应力区内存在一个强化载荷区。用强化载荷区内的不同载荷对前轴进行预锻炼,前轴的疲劳寿命有不同程度的提高。既使在高低载荷交替作用的条件下,低载强化效果依然存在。结构的寿命由强度衰减速率和强度提高速率共同决定,而不是仅由损伤决定。 相似文献
14.
15.
运用有限元法和疲劳损伤理论对某农用运输车驱动桥壳进行疲劳寿命计算,得到桥壳在试验条件下疲劳寿命分布.在疲劳寿命分析时,采用临界平面准则;主减速器后盖处的焊缝对整体疲劳寿命有很大影响,计算时采用标准BS5400规定的算法.分析结果表明,桥壳疲劳破坏集中在焊缝部位,与试验结果比较吻合.因此这种基于有限元分析的疲劳寿命预测方法是可行的,能够降低设计成本,缩短设计周期. 相似文献
16.
基于唯象的剩余强度衰减模型与蔡-希尔静强度判据,建立单向层合板在任意复杂面内应力作用下的疲劳失效准则。利用蒙特卡洛模拟方法计算层合板的疲劳寿命,并对其进行可靠性评估。根据T300/QY8911的三种典型层合板[0]16、[90]24和[±45]3S的拉—拉疲劳试验结果,利用蒙特卡洛模拟方法计算层合板的疲劳寿命,结果表明寿命服从Weibul分布。 相似文献
17.
疲劳寿命可靠性分析模型 总被引:1,自引:1,他引:1
基于寿命失效准则:使用寿命≥疲劳寿命,建立一种直接基于疲劳寿命分布的可靠性分析模型。并从理论上证明了该模型与应力-强度可靠性干涉模型的一致性。 相似文献
18.
以风机主齿轮箱的箱体连接螺栓疲劳强度分析为研究背景,提出一种在多轴非比例载荷谱作用下高强度螺栓连接疲劳强度的分析方法。该方法基于多轴疲劳理论,将外部多轴非比例的风力载荷谱通过连接箱体模型有限元应力计算及雨流计数处理,转化为螺栓各对应载荷方向上的应力雨流谱,然后在螺栓各计算点处进行各载荷方向上的应力合成,按照德国VDI2230标准的计算方法,结合螺栓材料的应力寿命(S-N)曲线,计算得到螺栓各计算点的疲劳损伤率,最后依据线性损伤累计理论,得出连接螺栓的疲劳安全系数。依据本文中的分析方法编制螺栓疲劳强度计算程序,再以某一型号风机齿轮箱的扭力臂与齿圈连接螺栓为例,计算得到该螺栓在风机20年工作寿命内的疲劳安全系数为1. 819。提出的方法为今后计算复杂载荷工况下的螺栓疲劳强度提供了一个新方向。 相似文献
19.
20.
零件在实验工况下所受应力数据对预测其疲劳寿命至关重要。针对发动机悬置螺栓等无法通过应变片传感器直接得到载荷数据的部位,提出一种基于加速度信号的悬置螺栓疲劳寿命估计方法。通过宏观断口及力学模型分析,明确了在不同工况下造成悬置螺栓疲劳失效的主要矢量载荷与加速度载荷的转换关系。结合悬置螺栓S-N曲线,计算出不同工况下由加速度引起的弯矩和拉压波动载荷的时间历程,并进行了发动机悬置螺栓的疲劳损伤计算,从而形成了一种复杂载荷下的发动机悬置螺栓疲劳寿命分析方法。最后基于悬置螺栓在两种道路的应力载荷谱所分别对应的疲劳寿命,建立起了针对悬置螺栓的道路间的当量关系。 相似文献