首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
为了研究环氧树脂/氧化铝微米复合电介质分子链松弛行为,本文制备了含有不同质量分数微米氧化铝填料的环氧复合电介质,通过差示扫描量热实验、宽带介电谱实验以及介电谱拟合计算,从玻璃化转变与介电松弛的角度,研究填料质量分数对环氧复合电介质介电松弛行为的影响。结果表明:微米氧化铝填料的加入使得试样玻璃化转变温度下降,但并不影响材料的分子链松弛强度。使用Arrhenius公式计算了复合电介质分子链松弛运动的活化能系数,发现随着填料质量分数的增加,活化能系数下降。分子链松弛的活化能系数与玻璃化转变温度有关,活化能系数高的试样,玻璃化转变温度高,表明其内部链段结合更紧密。  相似文献   

2.
本文制备不同填料含量的核壳结构BNNS@SiO2/环氧复合电介质,研究复合电介质界面区的化学特征与微观形貌,通过热刺激去极化电流法与击穿测试研究环氧复合电介质的陷阱特性与击穿性能。结果表明:BNNS@SiO2具有核壳结构,且包覆的SiO2厚度在纳米级别;BNNS@SiO2表面存在明显化学键合作用,与环氧基体可形成较强的界面区,提升其与环氧基体的相容性。少量BNNS@SiO2可有效提升复合电介质的电气强度,当BNNS@SiO2的质量分数为1%时,复合电介质的电气强度可提升52.3%。当BNNS@SiO2纳米粒子含量较少时,环氧复合电介质中的深陷阱增加,当纳米粒子含量较多时,深陷阱数量有所减少,浅陷阱数量增加。此外,核壳结构BNNS@SiO2/环氧复合电介质的热导率明显提高,有利于高电场下的绝缘散热。通过深陷阱效应与导热性能提升的综合作用,环氧复合电介质的击穿性能得到显著提升。  相似文献   

3.
选用两种纳米填料:纳米氧化钛(TiO2)和多壁羟基碳纳米管(MWCNTS),向环氧树脂中单独或同时加入两种粒子,制备16种不同的环氧纳米复合电介质.通过体积电阻率测试、表面电位衰减试验与真空直流沿面闪络试验,探究纳米粒子对环氧纳米复合电介质沿面闪络特性的影响.结果表明:环氧纳米复合电介质的沿面闪络电压与填料的质量分数有关,适量的纳米填料会提升复合电介质的沿面闪络电压.单独加入纳米TiO2与MWCNTS分别将闪络电压提升了14.49%和23.11%,同时加入两种填料可进一步将闪络电压提升至44.99 kV,提升幅度高达36.06%.通过表面电位衰减曲线计算了材料的表面陷阱特性.分析深陷阱与沿面闪络电压的关系发现,闪络电压与深陷阱能级线性相关,陷阱能级越深,闪络电压越高.同时添加两种纳米粒子可以提高材料的深陷阱深度,从而抑制材料表面电子发射和电荷输运过程,提高沿面闪络电压.  相似文献   

4.
为研究纳米颗粒对环氧树脂(epoxy resin,ER)介电和空间电荷特性的影响,以环氧树脂为基体材料,纳米二氧化硅(silicon dioxide,SiO_2)为填料,制备了SiO_2纳米颗粒质量分数在0~5%范围内的ER/SiO_2纳米复合电介质。测试和研究了复合电介质在不同频率下的介电特性和直流场强为33 k V/mm下的空间电荷行为。当SiO_2纳米颗粒的质量分数为0.5%和1%时,复合电介质可以获得较低的介电常数和介质损耗,同时有效抑制了同极性空间电荷在电极界面处的积累及注入;当SiO_2纳米颗粒的质量分数为2.5%和5%时,复合电介质在低频区域介电常数和介质损耗均比纯环氧树脂高,但在高频区域变化不明显,同时在电极界面处的空间电荷积累显著增加、注入明显。研究结果表明:纳米颗粒含量较低时ER/SiO_2复合电介质介电和空间电荷性能得到提高,是由于受到环氧树脂基体和纳米粒子之间的界面区影响,界面区是改善环氧树脂纳米复合材料电性能的关键因素。  相似文献   

5.
为了明确纳米SiO2添加对乙丙橡胶绝缘相对介电常数和电导特性的影响,使用熔融共混法制备了含不同质量分数纳米SiO2的乙丙橡胶复合电介质,分析了纳米颗粒在乙丙橡胶基体中的分散特性,以及纳米颗粒与乙丙橡胶基体的键合性质,测量了乙丙橡胶纳米复合电介质的相对介电常数以及不同温度和电场下的稳态电流,分析试样的电导特性.结果表明:当纳米SiO2质量分数为0.5%时,在乙丙橡胶中的分散性最好,低浓度掺杂形成的位阻作用,降低了乙丙橡胶分子链段及其侧基链段的活动能力,纳米复合电介质中的界面效应明显,介电常数、电导率降低,空间电荷注入的阈值场强提高,绝缘性能得到明显提升.随着质量分数提高,纳米颗粒与乙丙橡胶基体之间的界面效应减弱;当纳米SiO2质量分数为2.5%、5.0%时,掺杂形成的团聚使纳米复合电介质的介电常数增大,电导率提高,空间电荷注入的阈值场强降低.纳米SiO2添加带来的界面效应是影响乙丙橡胶纳米复合电介质性能的关键因素.  相似文献   

6.
采用微米和纳米氮化硼(BN)为填料,制备了微纳掺杂环氧/BN复合绝缘材料,并对BN掺杂总量一定时,环氧/BN复合绝缘热导率和击穿特性随纳米BN掺杂量的变化进行研究.结果表明:当控制BN掺杂总质量分数为20%时,随着纳米BN含量的增加,复合绝缘的热导率略有下降,工频电气强度先上升后下降,厚度为0.2 mm的试样在8 kV、25 kHz高频双极性方波电压下的耐压时间缩短.纯微米BN掺杂的环氧复合材料热导率最大(0.83 W/(m·K)),且在高频双极性方波电压下的耐压时间最长(193 s),分别比纯环氧树脂提高了277%和408%;当纳米BN的质量分数为1%时,环氧复合绝缘的工频电气强度最高,为131 kV/mm,比纯环氧树脂提高了27%.因此,对于微/纳米共掺杂环氧复合体系而言,纳米颗粒的加入主要有助于提高复合材料的工频电气强度,但会使复合材料的热导率下降,缩短其在高频双极性方波电压下的耐压时间.  相似文献   

7.
在3,3',4,4'-联苯四甲酸二酐(BPDA)-4,4'-二氨基二苯醚(ODA)型聚酰亚胺(PI)基体中引入2-甲基咪唑钴(ZIF-67)作为纳米填料,制备具有“三明治”结构的PI/ZIF-67三层复合薄膜.采用FTIR、XRD、SEM对ZIF-67及PI/ZIF-67三层纳米复合薄膜的结构进行表征,研究ZIF-67含量对复合薄膜热稳定性、介电性能的影响.结果 表明:当ZIF-67质量分数在10%以内时,PI/ZIF-67三层复合薄膜的初始分解温度大于500℃,具有较好的热稳定性;PI/ZIF-67三层复合薄膜的介电常数明显低于PI,当ZIF-67的质量分数为10%时,PI/ZIF-67三层复合薄膜的介电常数下降幅度可达50%;当ZIF-67质量分数为5%时,介电常数下降幅度达到71%.与不含ZIF-67的纯PI相比,ZIF-67质量分数低于10%的PI/ZIF-67三层复合薄膜的介质损耗略有提高.  相似文献   

8.
环氧复合材料在高温高场等复杂的工况下易积聚空间电荷,造成局部场强畸变,严重时将引发局部放电乃至绝缘击穿。通过纳米MgO颗粒与环氧树脂(EP)混合制备不同掺杂率的纳米MgO/EP复合电介质,采用差示扫描量热分析(DSC)测试环氧复合电介质的玻璃化转变温度;采用热刺激去极化电流法(TSDC)拟合计算环氧复合电介质的陷阱特性;采用电声脉冲法(PEA)测试环氧复合电介质的空间电荷特性。结果表明:纳米MgO颗粒的添加可以提高环氧树脂的玻璃化转变温度,抑制环氧树脂内空间电荷积聚。随着纳米MgO掺杂率的增加,纳米MgO/EP复合电介质的玻璃化转变温度先上升后下降,深陷阱能级和密度均先增大后减小;空间电荷密度先下降后上升,电场畸变的变化趋势与空间电荷的变化趋势相似。当纳米MgO掺杂率为3%时,纳米MgO/EP复合电介质的玻璃化温度达到最大值,抑制空间电荷积聚和场强畸变的能力最好。  相似文献   

9.
为研究石墨烯导电填料的加入对环氧材料电导机理的影响,制备了不同填料质量比下石墨烯/环氧树脂复合材料。通过测量得到该复合体系的渗流阈值为质量分数1.35%,选择了石墨烯填料质量分数为0.3%、远低于渗流阈值的复合材料进行研究。利用高温高场强电导电流测试系统,测量了纯环氧材料和石墨烯/环氧复合材料在50、80和100℃下和0.24~14.4 k V/mm场强下的极化电流曲线。研究结果表明:直流电压作用下,两种材料的极化电流衰减速率均随场强和温度的增加而增大。随着场强的增大,两种材料的电导机理均发生了从欧姆电导到空间电荷限制电流理论(SCLC)为主导的转变,且这种转变电导电流场强阈值(Ethi)随温度的升高而降低。石墨烯填料的加入使环氧材料电导电流密度活化能增大,且活化能随着场强的增加逐渐降低,石墨烯/环氧复合材料在高场强区的电导机理受SCLC和隧道效应共同影响。  相似文献   

10.
采用DMA的TMA模式对E51环氧树脂固化物的线膨胀系数进行测试,分析固化剂种类(甲基四氢苯酐(MeTHPA)、4,4-二氨基二苯甲烷(DDM)、双氰胺(Dicy))、填充粉体种类及用量等因素对其线膨胀系数的影响.结果表明:当TTg时,E51/Dicy固化物的线膨胀系数大于E51/MeTHPA固化物和E51/DDM固化物.分别填充SiO2、Al(OH)3和Al2O3后,环氧复合材料的线膨胀系数较纯环氧材料明显减小,且填充Al2O3的环氧复合材料线膨胀系数最小.同时环氧复合材料的线膨胀系数随无机填料填充量增加而增大,但当无机填料的质量分数达到70%~80%时,线膨胀系数随填充量的变化则较小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号