首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aspect Bernoulli model: multiple causes of presences and absences   总被引:1,自引:0,他引:1  
We present a probabilistic multiple cause model for the analysis of binary (0–1) data. A distinctive feature of the aspect Bernoulli (AB) model is its ability to automatically detect and distinguish between “true absences” and “false absences” (both of which are coded as 0 in the data), and similarly, between “true presences” and “false presences” (both of which are coded as 1). This is accomplished by specific additive noise components which explicitly account for such non-content bearing causes. The AB model is thus suitable for noise removal and data explanatory purposes, including omission/addition detection. An important application of AB that we demonstrate is data-driven reasoning about palaeontological recordings. Additionally, results on recovering corrupted handwritten digit images and expanding short text documents are also given, and comparisons to other methods are demonstrated and discussed.
Mikael ForteliusEmail:

Ella Bingham   received her M.Sc. degree in Engineering Physics and Mathematics at Helsinki University of Technology in 1998, and her Dr.Sc. degree in Computer Science at Helsinki University of Technology in 2003. She is currently at Helsinki Institute for Information Technology, located at the University of Helsinki. Her research interests include statistical data analysis and machine learning. Ata Kabán   is a lecturer in the School of Computer Science of the University of Birmingham, since 2003. She holds a B.Sc. degree in computer science (1999) from the University “Babes-Bolya” of Cluj-Napoca, Romania, and a Ph.D. in computer science (2001) from the University of Paisley, UK. Her current research interests concern statistical machine learning and data mining. Prior to her career in computer science, she obtained a B.A. degree in musical composition (1994) and the M.A. (1995) and Ph.D. (1999) degrees in musicology from the Music Academy “Gh. Dima” of Cluj-Napoca, Romania. Mikael Fortelius   is a palaeontologist with special interest in plant-eating mammals of the Cenozoic, especially ungulates and their relationship with habitat and climate change (the Ungulate Condition). Mikael is Professor of Evolutionary Palaeontology in the Department of Geology and Group Leader in the Institute of Biotechnology (BI), University of Helsinki. Since 1992, he has been engaged in developing a database of Neogene Old World Mammals (). The NOW database is maintained at the Finnish Museum of Natural History and developed in collaboration with an extensive Advisory Board; data access and downloading are entirely public.   相似文献   

2.
This paper focuses on human behavior recognition where the main problem is to bridge the semantic gap between the analogue observations of the real world and the symbolic world of human interpretation. For that, a fusion architecture based on the Transferable Belief Model framework is proposed and applied to action recognition of an athlete in video sequences of athletics meeting with moving camera. Relevant features are extracted from videos, based on both the camera motion analysis and the tracking of particular points on the athlete’s silhouette. Some models of interpretation are used to link the numerical features to the symbols to be recognized, which are running, jumping and falling actions. A Temporal Belief Filter is then used to improve the robustness of action recognition. The proposed approach demonstrates good performance when tested on real videos of athletics sports videos (high jumps, pole vaults, triple jumps and long jumps) acquired by a moving camera and different view angles. The proposed system is also compared to Bayesian Networks.
M. RombautEmail:

Emmanuel Ramasso   is currently pursuing a PhD at GIPSA-lab, Department of Images and Signal located in Grenoble, France. He received both his BS degree in Electrical Engineering and Control Theory and his MS degree in Computer Science in 2004 from Ecole Polytechnique de Savoie (Annecy, France). His research interests include Sequential Data Analysis, Transferable Belief Model, Fusion, Image and Videos Analysis and Human Motion Analysis. Costas Panagiotakis   was born in Heraklion, Crete, Greece in 1979. He received the BS and the MS degrees in Computer Science from University of Crete in 2001 and 2003, respectively. Currently, he is a PhD candidate in Computer Science at University of Crete. His research interests include computer vision, image and video analysis, motion analysis and synthesis, computer graphics, computational geometry and signal processing. Denis Pellerin   received the Engineering degree in Electrical Engineering in 1984 and the PhD degree in 1988 from the Institut National des Sciences Appliquées, Lyon, France. He is currently a full Professor at the Université Joseph Fourier, Grenoble, France. His research interests include visual perception, motion analysis in image sequences, video analysis, and indexing. Michèle Rombaut   is currently a full Professor at the Université Joseph Fourier, Grenoble, France. Her research interests include Data Fusion, Sequential Data Analysis, High Level Interpretation, Image and Video Analysis.   相似文献   

3.
NNSRM is an implementation of the structural risk minimization (SRM) principle using the nearest neighbor (NN) rule, and linear discriminant analysis (LDA) is a dimension-reducing method, which is usually used in classifications. This paper combines the two methods for face recognition. We first project the face images into a PCA subspace, then project the results into a much lower-dimensional LDA subspace, and then use an NNSRM classifier to recognize them in the LDA subspace. Experimental results demonstrate that the combined method can achieve a better performance than NN by selecting different distances and a comparable performance with SVM but costing less computational time.
Jiaxin Wang (Corresponding author)Email:

Danian Zheng   received his Bachelor degree in Computer Science and Technology in 2002 from Tsinghua University, Beijing, China. He received his Master degree and Doctoral degree in Computer Science and Technology in 2006 from Tsinghua University. He is currently a researcher in Fujitsu R&D Center Co. Ltd, Beijing, China. His research interests are mainly in the areas of support vector machines, kernel methods and their applications. Meng Na   received her Bachelor degree in Computer Science and Technology in 2003 from Northeastern, China. Since 2003 she has been pursuing the Master degree and the Doctoral degree at the Department of Computer Science and Technology at Tsinghua University. Her research interests are in the area of image processing, pattern recognition, and virtual human. Jiaxin Wang   received his Bachelor degree in Automatic Control in 1965 from Beijing University of Aeronautics and Astronautics, his Master degree in Computer Science and Technology in 1981 from Tsinghua University, Beijing, China, and his Doctoral degree in 1996 from Engineering Faculty of Vrije Universiteit Brussel, Belgium. He is currently a professor of Department of Computer Science and Technology, Tsinghua University. His research interests are in the areas of artificial intelligence, intelligent control and robotics, machine learning, pattern recognition, image processing and virtual reality.   相似文献   

4.
Due to the large data size of 3D MR brain images and the blurry boundary of the pathological tissues, tumor segmentation work is difficult. This paper introduces a discriminative classification algorithm for semi-automated segmentation of brain tumorous tissues. The classifier uses interactive hints to obtain models to classify normal and tumor tissues. A non-parametric Bayesian Gaussian random field in the semi-supervised mode is implemented. Our approach uses both labeled data and a subset of unlabeled data sampling from 2D/3D images for training the model. Fast algorithm is also developed. Experiments show that our approach produces satisfactory segmentation results comparing to the manually labeled results by experts.
Changshui ZhangEmail:

Yangqiu Song   received his B.S. degree from Department of Automation, Tsinghua University, China, in 2003. He is currently a Ph.D. candidate in Department of Automation, Tsinghua University. His research interests focus on machine learning and its applications. Changshui Zhang   received his B.S. degree in Mathematics from Peking University, China, in 1986, and Ph.D. degree from Department of Automation, Tsinghua University in 1992. He is currently a professor of Department of Automation, Tsinghua University. He is an Associate Editor of the journal Pattern Recognition. His interests include artificial intelligence, image processing, pattern recognition, machine learning, evolutionary computation and complex system analysis, etc. Jianguo Lee   received his B.S. degree from Department of Automatic Control, Huazhong University of Science and Technology (HUST), China, in 2001 and Ph.D. degree in Department of Automation, Tsinghua University in 2006. He is currently a researcher in Intel China Reasearch Center. His research interests focus on machine learning and its applications. Fei Wang   is a Ph.D. candidate from Department of Automation, Tsinghua University, Beijing, China. His main research interests include machine learning, data mining, and pattern recognition. Shiming Xiang   received his B.S. degree from Department of Mathematics of Chongqing Normal University, China, in 1993 and M.S. degree from Department of Mechanics and Mathematics of Chongqing University, China, in 1996 and Ph.D. degree from Institute of Computing Technology, Chinese Academy of Sciences, China, in 2004. He is currently a postdoctoral scholar in Department of Automation, Tsinghua University. His interests include computer vision, pattern recognition, machine learning, etc. Dan Zhang   received his B.S. degree in Electronic and Information Engineering from Nanjing University of Posts and Telecommunications in 2005. He is now a Master candidate from Department of Automation, Tsinghua University, Beijing, China. His research interests include pattern recognition, machine learning, and blind signal separation.   相似文献   

5.
Eigendecomposition-based techniques are popular for a number of computer vision problems, e.g., object and pose estimation, because they are purely appearance based and they require few on-line computations. Unfortunately, they also typically require an unobstructed view of the object whose pose is being detected. The presence of occlusion and background clutter precludes the use of the normalizations that are typically applied and significantly alters the appearance of the object under detection. This work presents an algorithm that is based on applying eigendecomposition to a quadtree representation of the image dataset used to describe the appearance of an object. This allows decisions concerning the pose of an object to be based on only those portions of the image in which the algorithm has determined that the object is not occluded. The accuracy and computational efficiency of the proposed approach is evaluated on 16 different objects with up to 50% of the object being occluded and on images of ships in a dockyard.
Anthony A. MaciejewskiEmail:

Chu-Yin Chang   received the B.S. degree in mechanical engineering from National Central University, Chung-Li, Taiwan, ROC, in 1988, the M.S. degree in electrical engineering from the University of California, Davis, in 1993, and the Ph.D. degree in electrical and computer engineering from Purdue University, West Lafayette, in 1999. From 1999--2002, he was a Machine Vision Systems Engineer with Semiconductor Technologies and Instruments, Inc., Plano, TX. He is currently the Vice President of Energid Technologies, Cambridge, MA, USA. His research interests include computer vision, computer graphics, and robotics. Anthony A. Maciejewski   received the BSEE, M.S., and Ph.D. degrees from Ohio State University in 1982, 1984, and 1987. From 1988 to 2001, he was a professor of Electrical and Computer Engineering at Purdue University, West Lafayette. He is currently the Department Head of Electrical and Computer Engineering at Colorado State University. He is a Fellow of the IEEE. A complete vita is available at: Venkataramanan Balakrishnan   is Professor and Associate Head of Electrical and Computer Engineering at Purdue University, West Lafayette, Indiana. He received the B.Tech degree in electronics and communication and the President of India Gold Medal from the Indian Institute of Technology, Madras, in 1985. He then attended Stanford University, where he received the M.S. degree in statistics and the Ph.D. degree in electrical engineering in 1992. He joined Purdue University in 1994 after post-doctoral research at Stanford, CalTech and the University of Maryland. His primary research interests are in convex optimization and large-scale numerical algebra, applied to engineering problems. Rodney G. Roberts   received B.S. degrees in Electrical Engineering and Mathematics from Rose-Hulman Institute of Technology in 1987 and an MSEE and Ph.D. in Electrical Engineering from Purdue University in 1988 and 1992, respectively. From 1992 until 1994, he was a National Research Council Fellow at Wright Patterson Air Force Base in Dayton, Ohio. Since 1994 he has been at the Florida A&M University---Florida State University College of Engineering where he is currently a Professor of Electrical and Computer Engineering. His research interests are in the areas of robotics and image processing. Kishor Saitwal   received the Bachelor of Engineering (B.E.) degree in Instrumentation and Controls from Vishwakarma Institute of Technology, Pune, India, in 1998. He was ranked Third in the Pune University and was recipient of National Talent Search scholarship. He received the M.S. and Ph.D. degrees from the Electrical and Computer Engineering department, Colorado State University, Fort Collins, in 2001 and 2006, respectively. He is currently with Behavioral Recognition Systems, Inc. performing research in computer aided video surveillance systems. His research interests include image/video processing, computer vision, and robotics.   相似文献   

6.
Texture classification is an important problem in image analysis. In the present study, an efficient strategy for classifying texture images is introduced and examined within a distributional-statistical framework. Our approach incorporates the multivariate Wald–Wolfowitz test (WW-test), a non-parametric statistical test that measures the similarity between two different sets of multivariate data, which is utilized here for comparing texture distributions. By summarizing the texture information using standard feature extraction methodologies, the similarity measure provides a comprehensive estimate of the match between different images based on graph theory. The proposed “distributional metric” is shown to handle efficiently the texture-space dimensionality and the limited sample size drawn from a given image. The experimental results, from the application on a typical texture database, clearly demonstrate the effectiveness of our approach and its superiority over other well-established texture distribution (dis)similarity metrics. In addition, its performance is used to evaluate several approaches for texture representation. Even though the classification results are obtained on grayscale images, a direct extension to color-based ones can be straightforward.
George EconomouEmail:

Vasileios K. Pothos   received the B.Sc. degree in Physics in 2004 and the M.Sc. degree in Electronics and Information Processing in 2006, both from the University of Patras (UoP), Greece. He is currently a Ph.D. candidate in image processing at the Electronics Laboratory in the Department of Physics, UoP, Greece. His main research interests include image processing, pattern recognition and multimedia databases. Dr. Christos Theoharatos   received the B.Sc. degree in Physics in 1998, the M.Sc. degree in Electronics and Computer Science in 2001 and the Ph.D. degree in Image Processing and Multimedia Retrieval in 2006, all from the University of Patras (UoP), Greece. He has actively participated in several national research projects and is currently working as a PostDoc researcher at the Electronics Laboratory (ELLAB), Electronics and Computer Division, Department of Physics, UoP. Since the academic year 2002, he has been working as tutor at the degree of lecturer in the Department of Electrical Engineering, of the Technological Institute of Patras. His main research interests include pattern recognition, multimedia databases, image processing and computer vision, data mining and graph theory. Prof. Evangelos Zygouris   received the B.Sc. degree in Physics in 1971 and the Ph.D. degree in Digital Filters and Microprocessors in 1984, both from the University of Patras (UoP), Greece. He is currently an Associate Professor at Electronics Laboratory (ELLAB), Department of Physics, UoP, where he teaches at both undergraduate and postgraduate level. He has published papers on digital signal and image processing, digital system design, speech coding systems and real-time processing. His main research interests include digital signal and image processing, DSP system design, micro-controllers, micro-processors and DSPs using VHDL. Prof. George Economou   received the B.Sc. degree in Physics from the University of Patras (UoP), Greece in 1976, the M.Sc. degree in Microwaves and Modern Optics from University College London in 1978 and the Ph.D. degree in Fiber Optic Sensor Systems from the University of Patras in 1989. He is currently an Associate Professor at Electronics Laboratory (ELLAB), Department of Physics, UoP, where he teaches at both undergraduate and postgraduate level. He has published papers on non-linear signal and image processing, fuzzy image processing, multimedia databases, data mining and fiber optic sensors. He has also served as referee for many journals, conferences and workshops. His main research interests include signal and image processing, computer vision, pattern recognition and optical signal processing.   相似文献   

7.
Emphysema is a common chronic respiratory disorder characterised by the destruction of lung tissue. It is a progressive disease where the early stages are characterised by a diffuse appearance of small air spaces, and later stages exhibit large air spaces called bullae. A bullous region is a sharply demarcated region of emphysema. In this paper, it is shown that an automated texture-based system based on co-training is capable of achieving multiple levels of emphysema extraction in high-resolution computed tomography (HRCT) images. Co-training is a semi-supervised technique used to improve classifiers that are trained with very few labelled examples using a large pool of unseen examples over two disjoint feature sets called views. It is also shown that examples labelled by experts can be incorporated within the system in an incremental manner. The results are also compared against “density mask”, currently a standard approach used for emphysema detection in medical image analysis and other computerized techniques used for classification of emphysema in the literature. The new system can classify diffuse regions of emphysema starting from a bullous setting. The classifiers built at different iterations also appear to show an interesting correlation with different levels of emphysema, which deserves more exploration.
Mithun Prasad (Corresponding author)Email:
Arcot SowmyaEmail:
Peter WilsonEmail:

Mithun Prasad   received his PhD from the University of New South Wales, Sydney, Australia in 2006. He was a postdoctoral scholar at the University of California, Los Angeles and now a research associate at Rensselaer Polytechnic Institute, NY. His research interests are computer aided diagnosis, cell and tissue image analysis. Arcot Sowmya   is a Professor, School of Computer Science and Engineering, UNSW, Sydney. She holds a PhD degree in Computer Science from Indian Institute of Technology, Bombay, besides other degrees in Mathematics and Computer Science. Her areas of research include learning in vision as well as embedded system design. Her research has been applied to extraction of linear features in remotely sensed images as well as feature extraction, recognition and computer aided diagnosis in medical images. Peter Wilson   is a clinical Radiologist at Pittwater Radiology in Sydney. He was trained at Royal North Shore Hospital and taught Body Imaging at the University of Rochester, NY, prior to taking up his current position.   相似文献   

8.
In this paper a novel scheme for color video compression using color transfer technique is proposed. Towards this, a new color transfer mechanism for video using motion estimation is presented. Encoder and decoder architectures for the proposed compression scheme are also presented. In this scheme, compression is achieved by firstly discarding chrominance information for all but selected reference frames and then using motion prediction and discrete cosine transform (DCT) based quantization. At decompression stage, the luminance-only frames are colored using chrominance information from the reference frames applying the proposed color transfer technique. To integrate color transfer mechanism with hybrid compression scheme a new color transfer protocol is defined. Both compression scheme and color transfer work in YCbCr color space.
Ritwik KumarEmail:

Ritwik Kumar   received his B.Tech. degree in Information and Communication Technology from Dhirubhai Ambani Institute of Information and Communication Technology, Gandhinagar, India in 2005. Since 2005 he has been a Ph.D. student at the Center for Vision, Graphics and Medical Imaging at the Department of Computer and Information Science and Engineering at the University of Florida, Gainesville, FL, USA. His research interests include machine learning, color video processing and face recognition Suman K. Mitra   is an Assistant Professor at the Dhirubhai Ambani Institute of Information and Communication Technology, Gandhinagar, India. Dr. Mitra obtained his Ph.D. from the Indian Statistical Institute. Earlier, Dr. Mitra was with the Institute of Neural Computation at the University of California, San Diego, USA as a post-graduate researcher and with the Department of Mathematics at the Indian Institute of Technology, Bombay as an assistant professor. Dr. Mitra’s research interest includes image processing, pattern recognition, Bayesian networks and digital watermarking. Currently, Dr. Mitra is serving International Journal of Image and Graphics (IJIG) as an Associate Editor. Dr. Mitra is a life member of ISCA and a member of IEEE, and IUPRAI   相似文献   

9.
Traditional pattern recognition (PR) systems work with the model that the object to be recognized is characterized by a set of features, which are treated as the inputs. In this paper, we propose a new model for PR, namely one that involves chaotic neural networks (CNNs). To achieve this, we enhance the basic model proposed by Adachi (Neural Netw 10:83–98, 1997), referred to as Adachi’s Neural Network (AdNN), which though dynamic, is not chaotic. We demonstrate that by decreasing the multiplicity of the eigenvalues of the AdNN’s control system, we can effectively drive the system into chaos. We prove this result here by eigenvalue computations and the evaluation of the Lyapunov exponent. With this premise, we then show that such a Modified AdNN (M-AdNN) has the desirable property that it recognizes various input patterns. The way that this PR is achieved is by the system essentially sympathetically “resonating” with a finite periodicity whenever these samples (or their reasonable resemblances) are presented. In this paper, we analyze the M-AdNN for its periodicity, stability and the length of the transient phase of the retrieval process. The M-AdNN has been tested for Adachi’s dataset and for a real-life PR problem involving numerals. We believe that this research also opens a host of new research avenues. Research partially supported by the Natural Sciences and Engineering Research Council of Canada.
Dragos Calitoiu (Corresponding author)Email:
B. John OommenEmail:
Doron NussbaumEmail:

Dragos Calitoiu   was born in Iasi, Romania on May 7, 1968. He obtained his Electronics degree in 1993 from the Polytechnical University of Bucharest, Romania, and the Ph. D. degree in 2006, from Carleton University, in Ottawa, Canada. He is currently a Postdoctoral Fellow with the Health Policy Research Division of Health Canada. His research interests include Pattern Recognition, Machine Learning, Learning Automata, Chaos Theory and Computational Neuroscience. B. John Oommen   was born in Coonoor, India on September 9, 1953. He obtained his B. Tech. degree from the Indian Institute of Technology, Madras, India in 1975. He obtained his M. E. from the Indian Institute of Science in Bangalore, India in 1977. He then went on for his M. S. and Ph. D. which he obtained from Purdue University, in West Lafayettte, Indiana in 1979 and 1982, respectively. He joined the School of Computer Science at Carleton University in Ottawa, Canada, in the 1981–1982 academic year. He is still at Carleton and holds the rank of a Full Professor. His research interests include Automata Learning, Adaptive Data Structures, Statistical and Syntactic Pattern Recognition, Stochastic Algorithms and Partitioning Algorithms. He is the author of more than 260 refereed journal and conference publications and is a Fellow of the IEEE and a Fellow of the IAPR. Dr. Oommen is on the Editorial Board of the IEEE Transactions on Systems, Man and Cybernetics, and Pattern Recognition. Doron Nussbaum   received his B.Sc. degree in mathematics and computer science from the University of Tel-Aviv, Israel in 1985, and the M. C. S. and Ph. D. degrees in computer science from Carleton University, Ottawa, Canada in 1988 and 2001, respectively. From 1988 to 1991 he worked for Tydac Technologies as a Manager of Research and Development. His work at Tydac focused on the development of a geographical information system. From 1991 to 1994, he worked for Theratronics as senior software consultant where he worked on the company’s cancer treatment planning software (Theraplan). From 1998 to 2001 he worked for SHL Systemshouse as a senior technical architect. In 2001 he joined the School of Computer Science at Carleton University as an Associate Professor. Dr. Nussbaum’s main research interests are medical computing, computational geometry, robotics and algorithms design.   相似文献   

10.
We argue that in order to understand which features are used by humans to group textures, one must start by computing thousands of features of diverse nature, and select from those features those that allow the reproduction of perceptual groups or perceptual ranking created by humans. We use the Trace transform to produce such features here. We compare these features with those produced from the co-occurrence matrix and its variations. We show that when one is not interested in reproducing human behaviour, the elements of the co-occurrence matrix used as features perform best in terms of texture classification accuracy. However, these features cannot be “trained” or “selected” to imitate human ranking, while the features produced from the Trace transform can. We attribute this to the diverse nature of the features computed from the Trace transform.
Maria PetrouEmail:

Maria Petrou   studied Physics at the Aristotle University of Thessaloniki, Greece, Applied Mathematics in Cambridge and she did her Ph.D. in the Institute of Astronomy in Cambridge, UK. She is currently the Professor of Signal Processing and the Head of the Communications and Signal Processing Group at Imperial College. She has published more than 300 scientific papers, on Astronomy, Remote Sensing, Computer Vision, Machine Learning, Colour analysis, Industrial Inspection, and Medical Signal and Image Processing. She has co-authored two books “Image Processing: the fundamentals” and “Image Processing: Dealing with texture” both published by John Wiley in 1999 and 2006, respectively. She is a Fellow of the Royal Academy of Engineering, Fellow of IEE, Fellow of IAPR, Senior member of IEEE and a Distinguished Fellow of the British Machine Vision Association. Alireza Talebpour   worked for several years in the private sector after his first degree in Electrical Engineering in Iran. He obtained his Ph.D. in image processing from Surrey University in 2004, and since then he has been a lecturer at Shahid Beheshti University in Iran. His research interests are in multimedia and signal and image processing. Alexander Kadyrov   obtained his Ph.D. in Mathematics, in 1983 from St Petersburg University. From 1979 to 1997 he held various research and teaching positions at Penza State University, Russia. He started working on computer vision in 1998. He has authored or co-authored about 60 papers, textbooks and inventions.   相似文献   

11.
In this paper, new measures—called clustering performance measures (CPMs)—for assessing the reliability of a clustering algorithm are proposed. These CPMs are defined using a validation measure, which determines how well the algorithm works with a given set of parameter values, and a repeatability measure, which is used for studying the stability of the clustering solutions and has the ability to estimate the correct number of clusters in a dataset. These proposed CPMs can be used to evaluate clustering algorithms that have a structure bias to certain types of data distribution as well as those that have no structure biases. Additionally, we propose a novel cluster validity index, V I index, which is able to handle non-spherical clusters. Five clustering algorithms on different types of real-world data and synthetic data are evaluated. The first dataset type refers to a communications signal dataset representing one modulation scheme under a variety of noise conditions, the second represents two breast cancer datasets, while the third type represents different synthetic datasets with arbitrarily shaped clusters. Additionally, comparisons with other methods for estimating the number of clusters indicate the applicability and reliability of the proposed cluster validity V I index and repeatability measure for correct estimation of the number of clusters.
Asoke K. NandiEmail:

Sameh A. Salem   graduated with a BSc degree in Communications and Electronics Engineering and an MSc in Communications and Electronics Engineering, both from Helwan University, Cairo, Egypt, in May 1998 and October 2003, respectively. He is currently pursuing PhD degree in the Signal Processing and Communications Group, Department of Electrical Engineering and Electronics, The University of Liverpool, UK. His research interests include clustering algorithms, machine learning, and parallel computing. Asoke K. Nandi   received PhD degree from the University of Cambridge (Trinity College), Cambridge, UK, in 1979. He held several research positions in Rutherford Appleton Laboratory (UK), European Organisation for Nuclear Research (Switzerland), Department of Physics, Queen Mary College (London, UK) and Department of Nuclear Physics (Oxford, UK). In 1987, he joined the Imperial College, London, UK, as the Solartron Lecturer in the Signal Processing Section of the Electrical Engineering Department. In 1991, he joined the Signal Processing Division of the Electronic and Electrical Engineering Department in the University of Strathclyde, Glasgow, UK, as a Senior Lecturer; subsequently, he was appointed as a Reader in 1995 and a Professor in 1998. In March 1999, he moved to the University of Liverpool, Liverpool, UK to take up his appointment with David Jardine, Chair of Signal Processing in the Department of Electrical Engineering and Electronics. In 1983, he was a member of the UA1 team at CERN that discovered the three fundamental particles known as W+, W and Z0 providing the evidence for the unification of the electromagnetic and weak forces, which was recognised by the Nobel Committee for Physics in 1984. Currently, he is the Head of the Signal Processing and Communications Research Group with interests in the areas of non-Gaussian signal processing, communications, and machine learning research. With his group he has been carrying out research in machine condition monitoring, signal modelling, system identification, communication signal processing, biomedical signals, ultrasonics, blind source separation, and blind deconvolution. He has authored or co-authored over 350 technical publications, including two books “Automatic Modulation Recognition of Communications Signals” (Kluwer Academic, Boston, MA, 1996) and “Blind Estimation Using Higher-Order Statistics” (Kluwer Academic, Boston, MA, 1999) and over 140 journal papers. Professor Nandi was awarded the Mounbatten Premium, Division Award of the Electronics and Communications Division, of the Institution of Electrical Engineers of the UK in 1998 and the Water Arbitration Prize of the Institution of Mechanical Engineers of the UK in 1999. He is a Fellow of the Cambridge Philosophical Society, the Institution of Engineering and Technology, the Institute of Mathematics and its applications, the Institute of Physics, the Royal Society for Arts, the Institution of Mechanical Engineers, and the British Computer Society.   相似文献   

12.
In this paper we present a novel methodology based on non-parametric deformable prototype templates for reconstructing the outline of a shape from a degraded image. Our method is versatile and fast and has the potential to provide an automatic procedure for classifying pathologies. We test our approach on synthetic and real data from a variety of medical and biological applications. In these studies it is important to reconstruct accurately the shape of the object under investigation from very noisy data. Here we assume that we have some prior knowledge about the object outline represented by a prototype shape. Our procedure deforms this shape by means of non-affine transformations and the contour is reconstructed by minimizing a newly developed objective function that depends on the transformation parameters. We introduce an iterative template deformation procedure in which the scale of the deformation decreases as the algorithm proceeds. We compare our results with those from a Gaussian Mixture Model segmentation and two state-of-the-art Level Set methods. This comparison shows that the proposed procedure performs consistently well on both real and simulated data. As a by-product we develop a new filter that recovers the connectivity of a shape.
Francesco de PasqualeEmail:

Francesco de Pasquale   received his Ph.D. in Applied Statistics from the University of Plymouth, United Kingdom in 2004 discussing a thesis on Bayesian and Template based methods for image analysis. Since his degree in Physics obtained at the University of Rome ‘La Sapienza’in 1999 his work has been focused on developing models and methods for Magnetic Resonance Imaging, in particular image registration, classification and segmentation in a Bayesian framework. After being appointed a 2-year contract as a Lecturer at the University of Plymouth from 2003 to 2004 he is now a post-Doc researcher at the ITAB, Institute for Advanced Biomedical Technologies, University of Chieti, Italy and he works on the analysis of fMRI and MEG data. Julian Stander   was born in Plymouth, UK in 1964. He received a BA in Mathematics with first class honours from University of Oxford in 1987, a Diploma in Mathematical Statistics with distinction from University of Cambridge in 1988, and a PhD from University of Bath in 1992. He has been a lecturer at the School of Mathematics and Statistics, University of Plymouth, since 1993, and was promoted to Reader in 2006. His fields of interest are: applications of statistics including image analysis, spatial modelling and disclosure limitation. He has published over 20 refereed journal articles.   相似文献   

13.
Optimizing two-pass connected-component labeling algorithms   总被引:5,自引:0,他引:5  
We present two optimization strategies to improve connected-component labeling algorithms. Taking together, they form an efficient two-pass labeling algorithm that is fast and theoretically optimal. The first optimization strategy reduces the number of neighboring pixels accessed through the use of a decision tree, and the second one streamlines the union-find algorithms used to track equivalent labels. We show that the first strategy reduces the average number of neighbors accessed by a factor of about 2. We prove our streamlined union-find algorithms have the same theoretical optimality as the more sophisticated ones in literature. This result generalizes an earlier one on using union-find in labeling algorithms by Fiorio and Gustedt (Theor Comput Sci 154(2):165–181, 1996). In tests, the new union-find algorithms improve a labeling algorithm by a factor of 4 or more. Through analyses and experiments, we demonstrate that our new two-pass labeling algorithm scales linearly with the number of pixels in the image, which is optimal in computational complexity theory. Furthermore, the new labeling algorithm outperforms the published labeling algorithms irrespective of test platforms. In comparing with the fastest known labeling algorithm for two-dimensional (2D) binary images called contour tracing algorithm, our new labeling algorithm is up to ten times faster than the contour tracing program distributed by the original authors.
Kenji SuzukiEmail:

Kesheng Wu   is a staff computer scientist at Lawrence Berkeley National Laboratory. His work primarily involves data management, data analyses and scientific computing. He is the lead developer of FastBit bitmap indexing software for searching over large datasets. He also led the development of a software package call TRLan, which computes eigenvalues of large symmetric matrices on parallel machines. He received a Ph.D. in computer science from the University of Minnesota, an M.S. in physics from the University of Wisconsin-Milwaukee, and a B.S. in physics from Nanjing University, China. His homepage on the web is . Ekow Otoo   holds a B.Sc. degree in Electrical Engineering from the University of Science and Technology, Kumasi, Ghana, and a Ph.D. degree in Computer Science from McGill University, Montreal, Canada. From 1987 to 1999, he was a tenured faculty at Carleton University, Ottawa, Canada. He has served as a consultant to Bell Northern Research, and the GIS Division, Geomatics Canada. He is presently a consultant with Mathematical Sciences Research Institute, Ghana, and a staff scientist/engineer, LBNL, Berkeley. He is a member of the ACM and IEEE. His research interests include database management, data structures, algorithms, parallel and distributed computing. Kenji Suzuki   received his Ph.D. degree from Nagoya University in 2001. In 2001, he joined Department of Radiology at University of Chicago. Since 2006, he has been Assistant Professor of Radiology, Medical Physics, and Cancer Research Center. His research interests include computer-aided diagnosis, machine learning, and pattern recognition. He published 110 papers including 45 journal papers. He has served as an associate editor for three journals and a referee for 17 journals. He received Paul Hodges Award, RSNA Certificate of Merit Awards, Cancer Research Foundation Young Investigator Award, and SPIE Honorable Mention Award. He is a Senior Member of IEEE.   相似文献   

14.
Map matching algorithms are utilised to support the navigation module of advanced transport telematics systems. The objective of this paper is to develop a framework to quantify the effects of spatial road network data and navigation sensor data on the performance of map matching algorithms. Three map matching algorithms are tested with different spatial road network data (map scale 1:1,250; 1:2,500 and 1:50,000) and navigation sensor data (global positioning system (GPS) and GPS augmented with deduced reckoning) in order to quantify their performance. The algorithms are applied to different road networks of varying complexity. The performance of the algorithms is then assessed for a suburban road network using high precision positioning data obtained from GPS carrier phase observables. The results show that there are considerable effects of spatial road network data on the performance of map matching algorithms. For an urban road network, the results suggest that both the quality of spatial road network data and the type of navigation system affect the link identification performance of map matching algorithms.
Robert B. NolandEmail:

Dr. Mohammed Quddus   obtained a PhD from Imperial College London in 2005 where he was working as a research assistant for four years and a research fellow for one year on a number of research projects. He received an MEng degree in Civil Engineering from the National University of Singapore in 2001 and a BSc in Civil Engineering from BUET (Bangladesh University of Engineering and Technology) in 1998. He joined Loughborough University as a lecturer in transport studies in 2006.
Dr. Robert Noland   is Reader in Transport and Environmental Policy and heads the Environment and Policy Research Group within the Centre for Transport Studies. He received his PhD at the University of Pennsylvania in Energy Management and Environmental Policy. Prior to joining Imperial College he was a Policy Analyst at the US Environmental Protection Agency and also conducted post-doctoral research in the Economics Department at the University of California at Irvine.
Prof Washington Ochieng   is Professor of Positioning and Navigation Systems at the Centre for Transport Studies (CTS) in the Department of Civil and Environmental Engineering at Imperial College London. He is also the Director of the Departmental MSc Programmes and the Imperial College Engineering Geomatics Group (ICEGG). Dr. Ochieng is a Fellow of the Royal Institute of Navigation (FRIN) and the Institution of Civil Engineering Surveyors (FInstCES). He is a Member of Council and Trustee of the Royal Institute of Navigation, Member of the Institution of Civil Engineers (MICE), the Institution of Highways and Transportation (MIHT), and the United States Institute of Navigation.
  相似文献   

15.
FRCT: fuzzy-rough classification trees   总被引:1,自引:1,他引:0  
Using fuzzy-rough hybrids, we have proposed a measure to quantify the functional dependency of decision attribute(s) on condition attribute(s) within fuzzy data. We have shown that the proposed measure of dependency degree is a generalization of the measure proposed by Pawlak for crisp data. In this paper, this new measure of dependency degree has been encapsulated into the decision tree generation mechanism to produce fuzzy-rough classification trees (FRCT); efficient, top-down, multi-class decision tree structures geared to solving classification problems from feature-based learning examples. The developed FRCT generation algorithm has been applied to 16 real-world benchmark datasets. It is experimentally compared with the five fuzzy decision tree generation algorithms reported so far, and the rough decomposition tree algorithm. Comparison has been made in terms of number of rules, average training time, and classification accuracy. Experimental results show that the proposed algorithm to generate FRCT outperforms existing fuzzy decision tree generation techniques and rough decomposition tree induction algorithm.
Rajen B. BhattEmail:

Dr. Rajen Bhatt   has obtained his B.E. and M.E. both in Control and Instrumentation, from S.S. Engineering College, Bhavnagar, and from Delhi College of Engineering, New Delhi in 1999 and 2002, respectively. He has obtained his Ph.D. from the Department of Electrical Engineering, Indian Institute of Technology Delhi, INDIA in 2006. He was actively engaged in the development of multimedia course on Control Engineering under the National Program on Technology Enabled Learning (NPTEL). He is a regular reviewer of International Journals like Pattern Recognition, Information Sciences, Pattern Analysis and Applications, and IEEE Trans. on Systems, Man and Cybernatics. Since June 2005, he is working with Imaging team of Samsung India Software Centre as a Lead Engineer. He also serves as a Member of Patent Review Committee at Samsung. He has published several research papers in reputed journals and conferences. His current research interests are Pattern Classification and Regression, Soft Computing, Data mining, Patents and Trademarks, and Information Technology for Education. He holds an expertise over industry standard software project management. Dr. M. Gopal   has obtained his B.Tech. (Electrical), M.Tech. (Control systems), and Ph.D. (Control Systems) degrees. all from Birla Institute of Technology and Science, Pilani in 1968, 1970, and 1976, respectively. He has been in the teaching and research field for the last three and half decades; associated with NIT Jaipur, BITS Pilani, IIT Bombay, City University London, and University Technology Malaysia, and IIT Delhi. Since January 1986 he is a Professor with the Electrical Engineering Department, Indian Institute of Technology Delhi. He has published six books in the area of Control Engineering, and a video course on Control Engineering including complete presentation and student questionnaires. He has also published interactive web-compatible multimedia course on Control Engineering, under National Program on Technology Enabled Learning (NPTEL). He has published several research papers in referred journals and conferences. His current research interests include Machine learning, Soft computing technologies, Intelligent control, and e-Learning.   相似文献   

16.
Previous research has argued that preliminary data analysis is necessary for software cost estimation. In this paper, a framework for such analysis is applied to a substantial corpus of historical project data (ISBSG R9 data), selected without explicit bias. The consequent analysis yields sets of dominant variables, which are then used to construct project effort estimation models. Performance of the predictors on the raw variables and the extracted sets of variables is then measured in terms of Mean Magnitude of Relative Error (MMRE), Median of Magnitude of Relative Error (MdMRE) and prediction at levels 0.05, 0.1, and 0.25. The results from the comparative evaluation suggest that more accurate prediction models can be constructed for the selected prediction techniques. The framework processed predictor variables are statistically significant, at the 95% confidence level for both parametric techniques and one non-parametric technique. The results are also compared with the latest published results obtained by other research based on the same data set. The comparison indicates that, the models constructed using framework processed data are generally more accurate.
Margaret RossEmail:

Qin Liu PhD MSc BSc   Associate Professor, Assistant Dean International Cooperation, School of Software Engineering, Tongji University, P.R. China. Dr Liu was awarded her PhD in Northumbria University in Jan 2006. She has been researching and lecturing in software engineering since 2001. Her research interests are software measurement, software engineering data analysis, and project productivity benchmarking. Dr. Liu has published research in Software Quality Journal, British Computer Science Software Quality Conference and ICSE2006 SSEE workshop. Wen Zhong Qin PhD MSc BSc   Associate Professor, School of Software Engineering, Tongji University, P.R.China. Dr Qin was awarded his PhD at Tongji University in Nov 2007. He has been researching in Survey Engineering and Geographic Information System. Dr. Qin has published research in GIS. Robert Mintram   is currently a senior research fellow at Bournemouth University in the UK. His principle research field is artificial intelligence with particular emphasis on the application of machine learning techniques to a wide class of computing problems. One area of special interest is the use of evolutionary techniques to train neural networks for pattern recognition and classification tasks. These find a use in the field of software estimation where Dr Mintram is actively engaged in research in this area. Margaret Ross   is Professor of Software Quality at Southampton Solent University. Margaret’s original degrees were in mathematics. Margaret’s area of interests are quality, outsourcing and greening within a computing context. She has been Conference Director since 1992 of the annual series of Software Quality Management international conferences, aimed at benefits to industry, and since 1995 of the annual series of international educational INSPIRE conferences. She has edited thirty books, and has been actively involved with the Software Quality Journal since its inception. Margaret is a Freeman of the City of London, Liveryman of the Worshipful Company of Engineers, longstanding independent member of the Parliamentary IT Committee and was awarded an Honorary Doctorate from the University of Stafford and an Honorary Fellowship by the British Computer Society. Margaret Ross has been and is influential in the British Computer Society (BCS), currently holding various positions including that of nationally elected member of the BCS Council, and Vice Chair of the BCS national Quality Special Interest Group.   相似文献   

17.
18.
19.
A detailed question set is required to test and measure the true extent that a software quality management system is adopted and implemented across a large company like Atomic Weapons Establishment (AWE) plc. The analysis of the gathered data reveals specific topics of weakness that can also reflect the cultural acceptance or resistance that management groups have towards the adoption of quality systems. Having identified detailed problems and barriers, effective strategies and programmes can be deployed to improve the level of implementation and, therefore, the effectiveness of a software quality management system. This paper presents the question set used and the subsequent results obtained from the implementation assessment for 55 software systems at AWE plc. The data is collated into management groups and the associated cultures discussed. The topics of weakness are highlighted together with the very specific actions that are least undertaken. A range of improvement actions is also presented.
Ray DawsonEmail:

Michael Elliott   is a Chartered Engineer and member of both the British Computer Society and The Institute of Engineering and Technology. He is the Software Quality Manager at the AWE in the UK and his main role is to ensure the certification to ISO 9001:2000, for all software related activities. Mike’s particular interest is the intricacies of dealing with different people in a culturally diverse establishment, such as AWE. He is undertaking post-graduate research at Loughborough University with Ray Dawson and Janet Edwards, and is researching into the practical nuances of the internal auditing, the adoption of self-assessment as a methodology, and the problems associated with implementing a software quality system.
Ray Dawson   obtained a Bachelor’s degree in mathematics with engineering and a masters degree in engineering from Nottingham University before entering industry with Plessey Telecommunications in 1977. While working at the company he developed an interest in the working methods for software development as practiced in industry. This became a research interest when he joined Loughborough University as a lecturer in 1987. Other research interests are information systems and knowledge management which he now combines with his interest in industrial working practices to work with companies to improve their information and knowledge management systems. Ray Dawson is now a Senior Lecturer in the Department of Computer Science and leader of the Knowledge Management Research Group at Loughborough University in the UK. He is a Chartered Engineer and a Fellow of the British Computer Society.
Janet Edwards   is currently a lecturer in Computer Science at Loughborough University. She has a Btech (Hons) degree in Metallurgical Engineering and Management and an MSc degree by research in Robotic Control from Loughborough University. She spent a number of years working as a software engineer in various organisations before returning to Loughborough. Her current research interests include Electronic Communication and E-commerce.   相似文献   

20.
Reporting Leaders and Followers among Trajectories of Moving Point Objects   总被引:1,自引:0,他引:1  
Widespread availability of location aware devices (such as GPS receivers) promotes capture of detailed movement trajectories of people, animals, vehicles and other moving objects, opening new options for a better understanding of the processes involved. In this paper we investigate spatio-temporal movement patterns in large tracking data sets. We present a natural definition of the pattern ‘one object is leading others’, which is based on behavioural patterns discussed in the behavioural ecology literature. Such leadership patterns can be characterised by a minimum time length for which they have to exist and by a minimum number of entities involved in the pattern. Furthermore, we distinguish two models (discrete and continuous) of the time axis for which patterns can start and end. For all variants of these leadership patterns, we describe algorithms for their detection, given the trajectories of a group of moving entities. A theoretical analysis as well as experiments show that these algorithms efficiently report leadership patterns.
Thomas Wolle (Corresponding author)Email:

Mattias Andersson   received his M.Sc. in Computer Science at Lund university, Sweden. Currently he is completing his Ph.D. thesis at the same university. He works in computational geometry, specialising in geometric networks. Applications of this work include transportation networks, computer graphics and geographic information systems (GIS). Joachim Gudmundsson   received his Ph.D. in computer science from Lund University in Sweden. During 2001-2004 he was a postdoctoral researcher at Utrecht University and at the Technical University of Eindhoven in the Netherlands. Since 2005 he has worked as a senior researcher at NICTA in Sydney, where he is currently heading the DMiST project (Data Mining in Spatio-Temporal sets). His research interests are computational geometry and approximation algorithms. Patrick Laube   holds an M.Sc. (Geography, 1999) and a Ph.D. degree (Sciences, 2005) from University of Zurich, Switzerland. His thesis covered the analysis of movement data, presenting an approach for spatio-temporal data mining based on pattern detection and visualisation. Recently he was a research fellow at the Spatial Analysis Facility at the University of Auckland, NZ, and a visiting scholar at the GeoVISTA Center at Penn State University, PA, USA. He is currently working as a research fellow in the Department of Geomatics at the University of Melbourne, Australia, focussing on distributed spatial computing and geosensor networks. Thomas Wolle   studied computer science at Friedrich-Schiller-University Jena, Germany, where he graduated in 2001. In the same year, he started as a research student at Utrecht University, the Netherlands, where he obtained his Ph.D. degree in 2005. His research focussed on graph algorithms, more specifically on graphs of bounded treewidth. In 2006, he joined the DMiST project as a researcher at NICTA in Sydney, where he works on algorithms for geometric problems that emerge in the field of spatio-temporal data mining.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号