首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
采用硫化法制备出具有多晶结构的光吸收层CuInS2薄膜,研究了硫源处N2流量对CuInS2薄膜微结构的影响。利用SEM和EDS观察和分析了它们的表面形貌和成分,采用XRD表征了薄膜的结构。结果表明:N2流量增大到600ml/min制得具有黄铜矿结构且沿(112)晶向择优生长的CuInS2薄膜,晶粒尺寸为230nm。  相似文献   

2.
采用磁控溅射法在玻璃衬底上沉积Cu-In合金预置膜,采用固态硫源在N2气氛下硫化热处理的方法制备了CuInS2薄膜。研究了硫化温度对CuInS2薄膜的晶相结构、表面形貌和光学带隙等性能的影响。采用X射线衍射(XRD)、场发射扫描电镜(FE-SEM)、紫外-可见光谱(UV-Vis)等测试手段对薄膜的晶相结构、表面形貌、光学性能进行了表征。结果表明,Cu-In合金预置膜经550℃硫化热处理20min可制备出黄铜矿结构的CuInS2薄膜,并具有(112)面的择优取向,所制备的CuInS2薄膜晶粒粒径约为1μm,光学带隙为1.51eV。  相似文献   

3.
采用中频交流磁控溅射方法,在玻璃基底上沉积Cu-In预制膜,采用固态硫化法制备获得了CuInS2(CIS)吸收层薄膜.考察了预制膜Cu/In原子比及硫化温度对于CIS薄膜结构及禁带宽度影响.通过XRD及Raman光谱分析了薄膜结构,通过近红外透过曲线得出薄膜禁带宽度.结果表明,随着预制膜中Cu与In原子比(Cu/In)及硫化温度不断升高,薄膜CuAu(CA)相含量逐渐降低,黄铜矿(CH)相逐渐升高,薄膜结晶性逐渐改善.600℃以上硫化时薄膜中主要存在CH相CuInS2.薄膜禁带宽度随着预制膜中Cu/In原子比及硫化温度不断升高而升高,Cu/In原子比为1.05,硫化温度为500℃时薄膜禁带宽度可达1.40eV.  相似文献   

4.
介绍了太阳电池用CuInS2薄膜一步共沉积法和分步电沉积法的工艺特点,重点讨论了一步法共沉积CuInS2薄膜的工艺因素,包括电解液的组成(如主盐浓度、络合剂、添加剂和附加盐等)、电沉积工艺规范(如沉积电位、温度、热处理等)等方面.并详细地分析了这些因素对电沉积CuInS2薄膜性能的影响,据此提出了目前实验室研究中存在的...  相似文献   

5.
硫化温度对FeS2薄膜的晶体结构和光电性能的影响   总被引:3,自引:0,他引:3  
本文用磁控溅射法制备的纯Fe膜,再在S气氛中于不同的温度下进行热硫化,硫化时间为10h,使其转变成为FeS2薄膜,并研究了硫化温度对转变形成的FeS2薄膜晶体结构、化学成分、组织形貌和光电性能的影响规律。  相似文献   

6.
真空蒸发在载玻片上沉积CuInS2薄膜(Cu、In、S原子配比为1∶0.1∶1.2).摸索CuInS2薄膜发生导电类型转换最有效的热处理条件,研究不同热处理工艺对CuInS2薄膜的结构、表面形貌、化学成分比和光学性能的影响.实验给出:沉积的薄膜进行360℃热处理30 min后,得到黄铜矿结构的CuInS2薄膜;SEN分析显示薄膜表面呈颗粒状较平整致密性略差,导电类型为N型,薄膜的本征吸收限为1.46eV,直接光学带隙Eg=1.38 eV.对薄膜进行370℃热处理20 min同样可得到N型CuInS2但含有少量的CuS2成分,薄膜表面致密性变好但粗糙度增大,本征吸收限发生红移为1.42 eV,Eg=1.40 eV.370℃,30 min热处理后可得到P型CuInS2薄膜,Eg=1.37 eV.制备的三种CuInS2薄膜的光吸收系数都在104 cm-1数量级以上.CuInS2薄膜中In或Cu元素含量大小,对薄膜的导电类型的变化起着决定性的作用,而薄膜中S和In元素的变化直接取决于热处理的条件.  相似文献   

7.
CuInS2薄膜的单源热蒸发制备及其性能研究   总被引:1,自引:1,他引:0  
本文以烧结合成的CuInS2粉末为原料,采用单源热蒸发技术在玻璃基底上沉积CuInS2薄膜。随着退火温度的升高,薄膜的结晶性能增强,表现出高度的(112)晶面择优取向,SEM观察显示:350℃退火后,薄膜致密,晶粒细小,大小为数十纳米。同时,热探针测试发现:薄膜的导电类型为弱N型。光学性能方面,当退火温度高于250℃时,CuInS2薄膜的禁带宽度为1.50 eV,接近吸收太阳光谱所需的理想禁带宽度值。  相似文献   

8.
CuInS2薄膜的制备及光学特性   总被引:1,自引:0,他引:1  
谢俊叶  李健  王延来 《功能材料》2011,42(Z1):129-132
真空共蒸发在玻璃衬底上制备CuInS2薄膜.研究不同Cu、In、S元素配比、不同热处理条件对薄膜的结构、化学计量比及光学性能的影响.实验结果给出:在元素配比中S的原子比x选择极为重要(实验选0.2≤x≤2),本实验Cu、In、S最佳原子比为1:0.1:1.2.用x(Cu).x(In):x(S)=1:0.1:1.2原子比...  相似文献   

9.
不同温度热硫化纯Fe膜制备FeS2薄膜的研究   总被引:1,自引:0,他引:1  
研究了在硫化压力为80kPa、等温20h条件下,硫化温度对磁控溅射制备的纯Fe膜反应形成FeS2多晶薄膜的影响。结果表明,在400 ̄600℃范围内,薄膜中反应生成FeS2过程比较充分,尤其在400℃硫化时,可以获得接近理想化学计量成分的、具有细小均匀组织形态的FeS2薄膜。当温度超过400℃后,FeS2晶粒尺寸明显增大,但亚晶尺寸保持恒定。  相似文献   

10.
采用中频交流磁控溅射方法沉积Cu-In预制膜,并采用固态源蒸发硫化方法制备CuInS2薄膜。考察了硫源温度对CuInS2薄膜性能的影响。采用扫描电镜(SEM)和X射线能量色散谱仪(EDS)分别观察了薄膜的表面形貌和分析了薄膜的成分,采用X射线衍射(XRD)表征了薄膜的组织结构。结果表明,在硫源温度处于280℃到360℃范围之内时,制备的CuInS2薄膜都具有单一的黄铜矿型结构,颗粒均匀,晶粒大小约为1μm。  相似文献   

11.
Copper indium disulfide films were deposited by chemical spray pyrolysis technique at different deposition temperatures. Deposition temperature was explored to understand how it affects the crystallography, stoichiometry, morphology, optical and electrical properties of the deposited films. The chemical composition of the films evaluated by energy dispersive X-ray spectroscopy revealed the presence of copper, indium and sulfur elements in the films. Also it was observed that films formed at higher temperatures are copper rich and also showed deficiency of sulfur. X-ray diffraction patterns showed that the sprayed CuInS2 films are polycrystalline with chalcopyrite structure and preferred orientation in the (112) direction. Atomic force microscope studies revealed significant variations in the surface morphology of the prepared films with different deposition temperature. An increase in the energy band gap was observed with increasing the deposition temperatures. The temperatures dependence of conductivity of CuInS2 thin films, determined in the temperature range of 225–400?K, showed their semiconducting behavior.  相似文献   

12.
CuInS2 (CIS) is studied widely as a promising absorber material for high efficient and low cost thin film solar cells. CIS thin films are prepared on soda lime glass substrates using Successive Ionic Layer Adsorption and Reaction (SILAR) technique at different deposition temperatures (40 to 70 °C). The structural, compositional and optical properties are studied with x-ray diffractometer, energy dispersive x-ray analyzer and spectrophotometer. The influence of the deposition temperature on the properties of CIS thin films is discussed in this paper in detail.  相似文献   

13.
采用直流磁控溅射法制备SmCo薄膜,研究了退火温度对薄膜微结构及磁性能的影响。XRD分析结果表明,当退火温度为600℃时,SmCo5相析出,而Sm2Co17相在700℃析出。SEM照片可看出,退火温度高于900℃时,六方柱状的SmCo5相和菱方状的Sm2Co17相全部析出。随着退火温度的升高,晶粒尺寸增大,当温度达940℃时,晶粒尺寸减小,而在980℃时,晶粒尺寸又将增大。VSM测试表明,与制备态的薄膜相比,退火后的薄膜在垂直于膜面方向的矫顽力、剩余磁化强度及最大磁能积都增大。960℃时得到矫顽力和剩余磁化强度的最大值,800℃时得到最大磁能积的最大值。  相似文献   

14.
Single phase copper indium disulphide (CuInS2) thin films of thickness between 60 nm and 650 nm with the chalcopyrite structure are obtained on NaCl and glass substrates by flash evaporation. The films were found to ben-type semiconducting. The influence of the substrate temperature on the crystallinity, conductivity, activation energy and optical band gap was studied. An improvement in the film properties could be achieved up to a substrate temperature of 523 K at a molybdenum source temperature of 1873 K.  相似文献   

15.
The optical absorption in flash-evaporated CuInS2 thin films was studied in the photon energy range from 0.5 to about 4.2 eV. CuInS2 was found to be a direct gap semiconductor with a gap energy of 1.524±0.005 eV at room temperature. The ground state energy of the free exciton was found to be about 8 meV. An indirect allowed transition was observed at 1.565±0.005 eV and was ascribed to an optical transition from the valence band maxima at the boundary of the Brillouin zone to the lowest conduction band minimum at the zone centre. Three further optical transitions which were probably due to the copper d states in the valence band were found at energies well above the fundamental edge.  相似文献   

16.
In this study, a facile solvothermal method was developed to prepare CuInS2 powders and CuInS2 thin films. The CuInS2 powders and CuInS2 thin films were prepared by solvothermal route using the precursor of Copper (II) chloride, indium (III) nitrate, thiourea, oxalic acid, hexadecyl trimethyl ammonium bromide and ethanol. The morphology, crystallographic structure, chemical composition and optical band gap of CuInS2 powders and CuInS2 thin films were investigated using scanning electronic microscope (SEM), X-ray diffraction (XRD), energy dispersive spectrometry (EDS) and UV–vis spectroscopy. The results reveal that both CuInS2 powders and CuInS2 thin films are in chalcopyrite phase. The CuInS2 powders are mainly composed of flower-like microspheres. Both microstructure of the sphere surface and diameter of sphere are affected by indium nitrate concentration in precursors. The CuInS2 thin films are composed of a large number of uniform flower-like nanosheets, and the nanosheets become smaller in size and denser in distribution density with increasing concentration of thiourea. The optical band gap is found to be 1.44 and 1.52 eV for CuInS2 powders and CuInS2 thin films, respectively. The deposition mechanism of the CuInS2 is discussed.  相似文献   

17.
采用射频磁控溅射法在氧氩比为0.2的混合气氛中,分别在室温、100℃、200℃、250℃、300℃、350℃和400℃温度下,在P-Si(100)衬底上制备了HfO2薄膜,并用SEM、XRD和AFM研究了衬底温度与薄膜沉积速率对微结构的影响.结果表明:随着衬底温度的增加,薄膜沉积速率呈减小趋势.室温沉积的HfO2薄膜为非晶态,当衬底温度高于100℃,薄膜出现单斜晶相,随着衬底温度继续增加,(111)择优取向更加明显,晶粒尺寸增大,薄膜表面粗糙度减小.  相似文献   

18.
The effect of solution pH on the growth of spray deposited CuInS2 thin films has been investigated. Solutions with pH 1.5, 2.4, 3.5 and 4.5 are used to deposit the films on glass substrates held at 550 K. The films have been characterized using optical absorption, X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis. At pH 1.5, no film formation is observed. Films deposited from 2.4 pH solution contain binary phase Cu2 S. Near stoichiometric, single phase CuInS2 films with chalcopyrite structure are formed when solution pH=3.5. Films deposited from 4.5 pH solution are also found to be single phase, near stoichiometric CuInS2 and exhibited chalcopyrite structure. However, an additional optical absorption process is observed which is attributed to a sub-band gap absorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号