首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 287 毫秒
1.
A procedure has been developed to derive stress intensity factors (SIFs) for part-elliptical cracks based on an approximate crack surface displacement mode assumption for general configurations. The crack surface displacement mode is composed of available 2D crack surface displacement modes at intersections of the crack surface and boundaries, or in symmetry planes. Along with the obtained crack surface displacement mode, SIFs are determined by the magnitude of the crack surface displacement derived from energy release rate for virtual crack increments. The procedure was analytically verified with the exact solution for an embedded crack in an infinite body subjected to uniform crack surface pressure. Several examples show the obtained results in acceptable agreements with available solutions.  相似文献   

2.
Abstract

This paper analyzes the mode‐III stress intensity factor of an inclined crack, embedded in a thin layer, bonded to a half plane, subjected to arbitrary distributed anti‐plane loads. Special alternating procedures are presented to evaluate the mode‐ III S.I.F. and the numerical results confirm the validity of the proposed alternating procedure. The solution of a bi‐material problem in an infinite plane with an inclined crack and the analytical solution of a thin layer, without crack, bonded to a half plane, subjected to an anti‐plane point force applied on the boundary are referred to as fundamental solutions. By using these fundamental solutions and alternating procedures, the stress intensity factors of a crack in a thin layer bonded to a half plane are evaluated. The numerical results of some reduced problems are computed and excellent agreements with existing solutions are obtained.  相似文献   

3.
The transient elastodynamic response of the finite punch and finite crack problems in orthotropic materials is examined. Solution for the stress intensity factor history around the punch corner and crack tip is found. Laplace and Fourier transforms together with the Wiener–Hopf technique are employed to solve the equations of motion in terms of displacements. A detailed analysis is made in the simplified case when a flat rigid punch indents an elastic orthotropic half-plane, the punch approaches with a constant velocity normally to the boundary of the half-plane. An asymptotic expression for the singular stress near the punch corner is analyzed leading to an explicit expression for the dynamic stress intensity factor which is valid for the time the dilatational wave takes to travel twice the punch width. In the crack problem, a finite crack is considered in an infinite orthotropic plane. The crack faces are loaded by impact uniform pressure in mode I. An expression for the dynamic stress intensity factor is found which is valid while the dilatational wave travels the crack length twice. Results for orthotropic materials are shown to converge to known solutions for isotropic materials derived independently.  相似文献   

4.
A set of hypersingular integral equations of a three-dimensional finite elastic solid with an embedded planar crack subjected to arbitrary loads is derived. Then a new numerical method for these equations is proposed by using the boundary element method combined with the finite-part integral method. According to the analytical theory of the hypersingular integral equations of planar crack problems, the square root models of the displacement discontinuities in elements near the crack front are applied, and thus the stress intensity factors can be directly calculated from these. Finally, the stress intensity factor solutions to several typical planar crack problems in a finite body are evaluated. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
A methodology for crack tip mesh design is developed which consists of comparing the mesh geometric parameters against the accuracy of the finite element solution. By successive changes in the mesh parameters a near optimal mesh can be obtained. This was done here two-dimensional linear elastic single mode problems. The direct displacement extrapolation method for stress intensity factor estimation is used.  相似文献   

6.
In this study the fracture mechanics parameters, including the strain energy release rate, the stress intensity factors and phase angles, along the curvilinear front of a three-dimensional bimaterial interface crack in electronic packages are considered by using finite element method with the virtual crack closure technique (VCCT). In the numerical procedure normalized complex stress intensity factors and the corresponding phase angles (Rice, J Appl Mech 55:98–103, 1988) are calculated from the crack closure integrals for an opening interface crack tip. Alternative procedures are also described for the cases of crack under inner pressure and crack faces under large-scale contact. Validation for the procedure is performed by comparing numerical results to analytical solutions for the problems of interface crack subjected to either remote tension or mixed loading. The numerical approach is then applied to study interface crack problems in electronic packages. Solutions for semi-circular surface crack and quarter-circular corner crack on the interface of epoxy molding compound and silicon die under uniform temperature excursion are presented. In addition, embedded corner delaminations on the interface of silicon die and underfill in flip-chip package under thermomechanical load are investigated. Based on the distribution of the fracture mechanics parameters along the interface crack front, qualitative predictions on the propensity of interface crack propagation under thermomechanical loads are given.  相似文献   

7.
This paper concerns the dual boundary contour method for solving two-dimensional crack problems. The formulation of the dual boundary contour method is presented. The crack surface is modeled by using continuous quadratic boundary elements. The traction boundary contour equation is applied for traction nodes on one of the crack surfaces and the displacement boundary contour equation is applied for displacement nodes on the opposite crack surface and noncrack boundaries. The direct calculation of the singular integrals arising in displacement BIEs is addressed. These singular integrals are accurately evaluated with potential functions. The singularity subtraction technique for determining the stress intensity factor KI, KII and the T-term are developed for mixed mode conditions. Some two-dimensional examples are presented and numerical results obtained by this approach are in very good agreement with the results of the previous papers. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
Maximum stress intensity factors of a surface crack usually appear at the deepest point of the crack, or a certain point along crack front near the free surface depending on the aspect ratio of the crack. However, generally it has been difficult to obtain smooth distributions of stress intensity factors along the crack front accurately due to the effect of corner point singularity. It is known that the stress singularity at a corner point where the front of 3 D cracks intersect free surface is depend on Poisson's ratio and different from the one of ordinary crack. In this paper, a singular integral equation method is applied to calculate the stress intensity factor along crack front of a 3-D semi-elliptical surface crack in a semi-infinite body under mixed mode loading. The body force method is used to formulate the problem as a system of singular integral equations with singularities of the form r −3 using the stress field induced by a force doublet in a semi-infinite body as fundamental solution. In the numerical calculation, unknown body force densities are approximated by using fundamental density functions and polynomials. The results show that the present method yields smooth variations of mixed modes stress intensity factors along the crack front accurately. Distributions of stress intensity factors are indicated in tables and figures with varying the elliptical shape and Poisson's ratio.  相似文献   

9.
In the case where an interface crack exists in an infinite two-dimensional elastic bimaterial, the crack surface is insulated under traction-free conditions and the uniform heat flow vertical to the crack from an infinite boundary is given, temperature and stress potentials are obtained by using the complex variable approach to solve Hubert problems, and the results are used to obtain thermal stress intensity factors. The mode II thermal stress intensity factor only occurs if both the shear moduli, as well as the Poisson's ratios in the upper and lower material, are the same. Otherwise, mode I and II thermal stress intensity factors exist but the value of the mode I thermal stress intensity factor is much smaller than that of mode II.  相似文献   

10.
Summary This paper examines the problem of a Mode I crack in a nonhomogeneous elastic medium. It is assumed that the shear modulus varies exponentially with the coordinate perpendicular to the plane of the crack. The problem is reduced to a Fredholm integral equation and in terms of its solution the normal components of stress and displacement are described. Expressions are also derived for the stress intensity factor and the crack energy. The effect of the inhomogeneity is examined and comparisons made with the corresponding results for the homogeneous material.  相似文献   

11.
A useful method is proposed to analyze a short interfacial crack emanating from the corner of a rectangular inclusion. We first analyze the singular stress field (and the corresponding singularity intensity factor H) without the crack in an infinite medium having the rectangular inclusion. The singular stress field (and the corresponding stress intensity factor K) at the tip of the short interfacial crack lying in the interface of the rectangular inclusion is also analyzed, giving the relation between H and K. With this relation, the stress intensity factor K is easily obtained for the case of a short interfacial crack from the corner of a different rectangular inclusion with different external boundary. This method is based on the assumption that the singular K-field is embedded in another singular H-field, which is much smaller than the specimen geometry. To meet the assumption, it is found here that the eigenfunction corresponding to the next smallest eigenvalue of the singular H-field has to be considered. An example is presented to show the usefulness of the present method, where a short interfacial crack from the corner of a rectangular lead frame in epoxy compound used in electronic packaging is analyzed. It is found that the result of the present method is in good agreement with that of the well-known method.  相似文献   

12.
In this paper, a singular integral equation method is applied to calculate the stress intensity factor along crack front of a 3D inclined semi-elliptical surface crack in a semi-infinite body under tension. The stress field induced by displacement discontinuities in a semi-infinite body is used as the fundamental solution. Then, the problem is formulated as a system of integral equations with singularities of the form r –3. In the numerical calculation, the unknown body force doublets are approximated by the product of fundamental density functions and polynomials. The results show that the present method yields smooth variations of mixed modes stress intensity factors along the crack front accurately for various geometrical conditions. The effects of inclination angle, elliptical shape, and Poisson's ratio are considered in the analysis. Crack mouth opening displacements are shown in figures to predict the crack depth and inclination angle. When the inclination angle is 60 degree, the mode I stress intensity factor F I has negative value in the limited region near free surface. Therefore, the actual crack surface seems to contact each other near the surface.  相似文献   

13.
A boundary element method (BEM) was specially developed for a crack under crack face pressure in arbitrary two-dimensional problems. It is based on the basic stress solutions for an infinite plane with a crack loaded by body forces and moment at arbitrary point, which were derived by Erdogan from the Kolosov-Muskhelishvili fundamental functions, and the basic solution for a crack in an infinite plate under crack surface pressure, so that the crack surface need not be modelled. Therefore, minimal modelling efforts are needed to obtain stress intensity factors with the method and its accuracy was established by comparing the obtained results with the exact SIF results and acceptable results for various problems of arbitrary shapes and loadings.  相似文献   

14.
The problems of determining the stress and displacement fields in an infinite orthotropic plane containing a cruciform crack 387-1, y=0 and 387-2, x=0 when (I) the shape of the crack is prescribed and (II) the cracks are opened by given normal pressures, are reduced to mixed boundary value problems for the quarter plane. Using integral transform techniques, a closed form solution is obtained for problem I, whereas the solution of problem II has been reduced to solving a Fredholm integral equation of second kind with non-singular kernel. Numerical calculation of the stress intensity factor and crack energy in the case of a linear loading function for various crack lengths are presented for problem II, using the values of material constants for a Boron-Epoxy composite.  相似文献   

15.
In this paper a unique criteria, crack surface relative displacement, is used to evaluate mixed-mode (mode I and mode II) fracture mechanics problems. Using a conic-section simulation of a crack surface, relationships among the energy release rate G, the stress intensity factors (K1 and K2), and crack surface relative displacement are developed. Because the crack surface relative displacement criterion makes direct use of the displacements on the crack surface, instead of the stress field in the region of the crack tip, it simplifies numerical analysis of crack problems. A finite element model of a slant-center-cracked plate is employed to demonstrate the applicability of crack surface relative displacement to mixed-mode problems. The numerical results obtained agree well with analytical solutions. In addition, it is illustrated that similar to K1, K2, and G (J in LEFM), crack surface, relative displacement can serve as a fracture criterion for general mixed-mode I and II fracture mechanics problems.  相似文献   

16.
This study presents a methodology for evaluating crack closure and the effect of crack-tip plasticity on stress intensity. Full-field displacement maps obtained by digital image correlation are used to obtain the mixed-mode, crack-driving force. The methodology allows the quantification of the effect of a range of contact phenomena: effects arising from interlocking, plastic deformation of crack face asperities and wedging generated as a consequence of sliding displacements of fatigue cracks have been identified. By evaluating the effective crack-tip stress intensity factor, crack opening levels can be quantified for both mode I and mode II. Moreover, the approach can take into account plasticity effects local to the crack in determining the stress intensity factor. All the information can be extracted in a non-contacting fashion with equipment that can be easily incorporated into industrial environments.  相似文献   

17.
In this paper, a versatile body force method for a quarter-infinite solid with a corner crack of arbitrary shape is proposed under two types of pressure: constant and linear. New numerical results are obtained for different corner crack cases. Fatigue crack growth from a corner crack has been analysed successively with the present method. Moreover, the stress intensity factor of a corner crack is proposed in a simple form for an arbitrary shape.  相似文献   

18.
The main objective of this study is to examine the three dimensional surface crack problems in functionally graded coatings subjected to mode I mechanical or transient thermal loading. The surface cracks are assumed to have a semi-elliptical crack front profile of arbitrary aspect ratio. The cracks are embedded in the functionally graded material (FGM) coating which is perfectly bonded to a homogeneous substrate. A three dimensional finite element method is used to solve the thermal and structural problems. Collapsed 20-node isoparametric elements are utilized to simulate the strain singularity around the crack front. The stress intensity factors are computed by using the displacement correlation technique. Four different coating types are considered in the analyses which have homogeneous, ceramic-rich (CR), metal-rich (MR) and linear variation (LN) material composition profiles. In the mechanical loading problems, the composite medium is assumed to be subjected to fixed-grip tension or three point bending. In the thermal analysis, a transient residual stress problem is considered. The stress intensity factors calculated for FGM plates are in good agreement with the previously published results on three dimensional surface cracks. The new results provided show that maximum stress intensity factors computed during transient thermal loading period for the FGM coatings are lower than those of the homogeneous ceramic ones.  相似文献   

19.
The stress intensity factor (SIF) for an embedded elliptical crack in a turbine rotor and the thermal shock stress intensity factor for a semi-elliptical surface crack in a finite plate are determined by means of Vainshtok's weight function method. The solution for the semi-elliptical surface crack is in good agreement with the previous one. The value of the SIF for the embedded elliptical crack in the turbine rotor under centrifugal and thermal loading is larger at the crack contour near the inner radius surface and almost constant at the opposite crack contour. The SIF decreases by increasing the crack ratio, and the distance between the inner radius surface and the crack center.  相似文献   

20.
A thermo-mechanical effect from partial conversion of fracture work into heat energy during crack propagation is considered with a simple mathematical model. It is assumed that the heat production zone in the vicinity of the crack tip is very small. Thus, the crack propagation process can be viewed as propagation of the crack in elastic material with a point thermal heat source fixed at the tip of the crack. This thermal heat source generates its own temperature and stress fields around the crack tip. As shown in this paper it also generates a negative stress intensity factor that specifies fracture mode I and has to be accounted for in the energetic fracture criterion. The model developed may help to explain many experimental observations such as the increase in the specific surface energy that accompanies an increase in the crack speed and why fracture mode I has a special role in crack propagation phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号