共查询到7条相似文献,搜索用时 0 毫秒
1.
A fundamental issue affecting the performance of a parallel application running on a heterogeneous computing system is the assignment of tasks to the processors in the system. The task assignment problem for more than three processors is known to be NP-hard, and therefore satisfactory suboptimal solutions obtainable in an acceptable amount of time are generally sought. This paper proposes a simple and effective iterative greedy algorithm to deal with the problem with goal of minimizing the total sum of execution and communication costs. The main idea in this algorithm is to improve the quality of the assignment in an iterative manner using results from previous iterations. The algorithm first uses a constructive heuristic to find an initial assignment and iteratively improves it in a greedy way. Through simulations over a wide range of parameters, we have demonstrated the effectiveness of our algorithm by comparing it with recent competing task assignment algorithms in the literature. 相似文献
2.
A high performance algorithm for static task scheduling in heterogeneous distributed computing systems 总被引:2,自引:0,他引:2
Effective task scheduling is essential for obtaining high performance in heterogeneous distributed computing systems (HeDCSs). However, finding an effective task schedule in HeDCSs requires the consideration of both the heterogeneity of processors and high interprocessor communication overhead, which results from non-trivial data movement between tasks scheduled on different processors. In this paper, we present a new high-performance scheduling algorithm, called the longest dynamic critical path (LDCP) algorithm, for HeDCSs with a bounded number of processors. The LDCP algorithm is a list-based scheduling algorithm that uses a new attribute to efficiently select tasks for scheduling in HeDCSs. The efficient selection of tasks enables the LDCP algorithm to generate high-quality task schedules in a heterogeneous computing environment. The performance of the LDCP algorithm is compared to two of the best existing scheduling algorithms for HeDCSs: the HEFT and DLS algorithms. The comparison study shows that the LDCP algorithm outperforms the HEFT and DLS algorithms in terms of schedule length and speedup. Moreover, the improvement in performance obtained by the LDCP algorithm over the HEFT and DLS algorithms increases as the inter-task communication cost increases. Therefore, the LDCP algorithm provides a practical solution for scheduling parallel applications with high communication costs in HeDCSs. 相似文献
3.
《Journal of Parallel and Distributed Computing》2014,74(12):3228-3239
Large-scale compute clusters of heterogeneous nodes equipped with multi-core CPUs and GPUs are getting increasingly popular in the scientific community. However, such systems require a combination of different programming paradigms making application development very challenging.In this article we introduce libWater, a library-based extension of the OpenCL programming model that simplifies the development of heterogeneous distributed applications. libWater consists of a simple interface, which is a transparent abstraction of the underlying distributed architecture, offering advanced features such as inter-context and inter-node device synchronization. It provides a runtime system which tracks dependency information enforced by event synchronization to dynamically build a DAG of commands, on which we automatically apply two optimizations: collective communication pattern detection and device-host-device copy removal.We assess libWater’s performance in three compute clusters available from the Vienna Scientific Cluster, the Barcelona Supercomputing Center and the University of Innsbruck, demonstrating improved performance and scaling with different test applications and configurations. 相似文献
4.
A novel discrete particle swarm optimization algorithm for meta-task assignment in heterogeneous computing systems 总被引:1,自引:0,他引:1
Optimal assignment of a meta-task in heterogeneous computing systems is NP-complete in the general case. Therefore, heuristic approaches must be employed to find good solutions within a reasonable time. We propose a novel discrete particle swarm optimization (DPSO) algorithm for this problem. Firstly, to make particle swarm optimization algorithm more suitable for solving task assignment problems, particles are represented as integer vectors and a new position update method is developed based on discrete domain. Secondly, an effective variable neighborhood descent algorithm is applied to emphasize exploitation. In addition, migration mechanism is introduced with the hope to escape from possible local optimum and to balance the exploration and exploitation. Computational simulations and comparisons based on a set of benchmark instances indicate that the proposed DPSO algorithm is a viable approach for the task assignment problem. 相似文献
5.
This paper proposes a new duplication-based task scheduling algorithm for distributed heterogeneous computing (DHC) systems.
For such systems, many researchers have focused on solving the NP-complete problem of scheduling directed acyclic task graphs
to minimize the makespan. However, the heterogeneity of computational resources and communication mechanisms poses some major
obstacles to achieving high parallel efficiency. This paper proposes a heuristic strategy called the Dominant Predecessor
Duplication (DPD) scheduling algorithm, which allows for system heterogeneities and communication bandwidth to exploit the
potential of parallel processing. This algorithm can improve system utilization and avoid redundant resource consumption,
resulting in better schedules. Experimental results show that the system heterogeneities and program structures of applications
affect scheduling performance, and that our presented algorithm is better able to avoid these problems than those presented
in previous literature. Here, we show that our algorithm can be applied to design efficient distributed systems to overcome
performance bottlenecks caused by system heterogeneities.
相似文献
Chao-Tung YangEmail: |
6.
Vladimir Shestak Edwin K.P. Chong Howard Jay Siegel Anthony A. Maciejewski Lotfi Benmohamed I-Jeng Wang Rose Daley 《Journal of Parallel and Distributed Computing》2008
Providing efficient workload management is an important issue for a large-scale heterogeneous distributed computing environment where a set of periodic applications is executed. The considered shipboard distributed system is expected to operate in an environment where the input workload is likely to change unpredictably, possibly invalidating a resource allocation that was based on the initial workload estimate. The tasks consist of multiple strings, each made up of an ordered sequence of applications. There is a quality of service (QoS) minimum throughput constraint that must be satisfied for each application in a string, and a maximum utilization constraint that must be satisfied on each of the hardware resources in the system. The challenge, therefore, is to efficiently and robustly manage both computation and communication resources in this unpredictable environment to achieve high performance while satisfying the imposed constraints. This work addresses the problem of finding a robust initial allocation of resources to strings of applications that is able to absorb some level of unknown input workload increase without rescheduling. The proposed hybrid two-stage method of finding a near-optimal allocation of resources incorporates two specially designed mapping techniques: (1) the Permutation Space Genitor-Based heuristic, and (2) the follow-up Branch-and-Bound heuristic based on an Integer Linear Programming (ILP) problem formulation. The performance of the proposed resource allocation method is evaluated under different simulation scenarios and compared to an iteratively computed upper bound. 相似文献
7.
Mohammad Hadi Rezaei 《International journal of systems science》2018,49(2):284-298
This paper investigates the stationary average consensus problem for a class of heterogeneous-order multi-agent systems. The goal is to bring the positions of agents to the average of their initial positions while letting the other states converge to zero. To this end, three different consensus protocols are proposed. First, based on the auxiliary variables information among the agents under switching directed networks and state-feedback control, a protocol is proposed whereby all the agents achieve stationary average consensus. In the second and third protocols, by resorting to only measurements of relative positions of neighbouring agents under fixed balanced directed networks, two control frameworks are presented with two strategies based on state-feedback and output-feedback control. Finally, simulation results are given to illustrate the effectiveness of the proposed protocols. 相似文献