首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
气固搅拌流化床压力脉动的小波分析   总被引:5,自引:4,他引:1       下载免费PDF全文
王嘉骏  张文峰  冯连芳  顾雪萍 《化工学报》2006,57(12):2854-2859
在内径188 mm、静床高400 mm的搅拌流化床中,采用Geldart D类颗粒为实验物料,通过小波分析研究了不同气速和搅拌桨转速下搅拌流化床的压力脉动行为.实验发现,搅拌桨的转动作用促使在普通流化床中不易散式流态化的D类颗粒形成了散式流态化.随着气速的增加,第1尺度的小波能量特征值在某一个气速范围内发生急剧变化,进而提出了将该气速范围的下限和上限分别定义为临界鼓泡速度和充分鼓泡速度的判据.随搅拌转速的增加,散式流态化的气速操作范围线性增加.在鼓泡流态化状态下,气速是流化床气泡行为的主导因素,搅拌桨转速的增加对气泡产生的频率无明显影响但可使气泡的直径变小.  相似文献   

2.
气泡特性作为气固流化床的基本特征之一,在流化床设计中非常重要。当液体进入流化床后,先与颗粒发生作用,进而影响流化床中的气泡行为。文中以图像处理技术为基础,通过实验研究不同表观气速、液体黏度以及液体含量下的流化床气泡面积变化规律,结果表明:气泡面积与表观气速呈正比关系,且当气速变化时,气泡形心位置均随其线性增加;液体黏度逐渐增加,气泡面积呈现下降趋势,直至气泡逐渐消失;液体含量对床内上下区域内的气泡面积影响各不相同;同时分析压力信号的功率谱密度也可以反映气泡的活跃程度。  相似文献   

3.
流化床反应器的应用较为广泛,但是由于流化床内气泡的存在会对反应器内的传质效果带来不利影响,本文简述的提高流化气速使流化床操作向快速流态化发展以及在流化床内部添加内构件的方法,都是通过抑制或消除气泡等方法来强化气固间的接触从而达到提高气固传质效率的目的。  相似文献   

4.
基于欧拉双流体模型,在水平管表面采用渐进式网格,对内置水平管式鼓泡流化床的动力学特性进行数值模拟,研究表观气速对时均空隙度与膨胀率的影响。模拟结果显示:气泡在水平管排区域存在合并、破裂等运动行为;在管排区域随着表观气速的增加,时均空隙度增大,并且相比于无管式流化床沿径向方向更加均匀;内置水平管式流化床的时均膨胀率高于无沉浸管式流化床的时均膨胀率,且随表观气速的增加有逐渐接近的趋势。  相似文献   

5.
三相循环流化床中气泡大小及其分布的实验研究   总被引:12,自引:3,他引:9       下载免费PDF全文
用光纤探头技术对三相循环流化床中的气泡大小及其分布进行了系统研究 ,实验测定了操作条件对气泡大小及其分布的影响规律 .实验结果表明 ,三相循环流化床中气泡的大小分布可用对数正态分布表征 ,在实验条件下气泡平均直径在床中心区域较小且沿半径方向由中心向边壁逐渐增大 ,并随表观气速的增大而减小 ,随固含率的增大而增大 ,表观液速对气泡平均直径的影响较小  相似文献   

6.
采用溶氧法测量了三相循环流化床中液相溶氧浓度的轴向分布,并按轴向扩散模型处理实验数据,优化得到气液体积传质系数kLa,同时用光纤探头测量了体系中的气含率和气泡大小分布,计算得到了气液相界面积a和气液传质系数kL,并研究了主要操作条件(表观气速、表观液速和固含率)对气液传质系数的影响规律.  相似文献   

7.
多孔挡板流化床气泡行为的研究   总被引:1,自引:0,他引:1  
本文在内径为(?)120mm 的多孔挡板流化床中,用光导纤维法和电容法测定了 Al(OH)_3粉、铜粉和 FCC 三种不同物料体系的气泡频率和气泡速度,对操作条件和挡板参数对气泡行为的影响作了研究和分析。结果表明,在一定的气速下,挡板的开孔率、孔径和板间距(级间高径比小于3)对气泡频率和气泡速度的影响较小;对属 B 类的 Al(OH)_3粉和铜粉物料,气速对气泡频率的影响可以忽略,而对属 A 类的 FCC 物料,气泡频率随气速的增大而增大。  相似文献   

8.
为了考察多孔筛板和单旋导向挡板组合对气固两相流动的作用效果,采用床层段内径为90 mm的三维流化床冷模装置,在表观气速(U_g)为0.04~1.14 m/s、初始装料高度(H)为650 mm的操作条件下,分析了自由流化床内气固两相流动特点,并对比分析了自由流化床、单旋流筛板式气固挡板流化床及双旋流筛板式气固挡板流化床压力脉动标准偏差和压差脉动标准偏差等参数,确立了旋流筛板式气固挡板有效抑制并破碎气泡的作用域。结果表明:旋流筛板式气固挡板有效抑制并破碎气泡的气速作用域为0.04 m/s≤U_g≤0.57 m/s,此时对应的自由流化床中气固两相处于鼓泡-节涌过渡流态化;轴向空间作用域为旋流筛板式气固挡板下方及包含旋流筛板式气固挡板的区域。增加旋流筛板式气固挡板的数量有助于强化破碎气泡的效果及拓宽其轴向空间作用域,但并不能拓宽破碎气泡的气速作用域。  相似文献   

9.
在表观气速Ug=0.04~1.14 m/s时,采用旋流筛板构型的挡板式内构件,通过对比分析旋流筛板式气固挡板流化床与自由床内流动现象、压差脉动标准偏差和压力脉动标准偏差等参数,确定了旋流筛板式气固挡板流化床能有效破碎气泡的流动与操作条件。结果表明,构件下方区域颗粒随表观气速增加而不断转移至构件上方床层,造成构件下方区域密相床层高度持续降低,该区域出现3种流动状态并直接决定构件是否能破碎气泡。当Ug<0.44 m/s时,构件下方区域密相床层料位较高,形成下部为密相床层、上部为密相与大气泡交替通过构件的鼓泡床,此时构件具有抑制气泡生长并破碎气泡的作用,全床压差脉动及压力脉动标准偏差低于相同条件下的自由床;当0.44≤Ug<0.66 m/s时,密相床层料位较低,形成下部为密相床层、上部为单一稀相的湍动床,此时构件不再直接抑制气泡生长或破碎气泡,但构件下方密相床层的存在能降低构件下方及构件上方一定高度内床层的压力脉动强度;当Ug≥0.66 m/s后,密相床层完全消失,形成气体为连续相的稀相流化状态,构件不能破碎气泡、降低床层压力和压差脉动强度。  相似文献   

10.
通过测定流化床料层压差,研究了多层流化床顶层进料均匀性、进气及排气方式对多层流化床流化料层高度均匀性的影响。结果表明,布料越均匀,上中二料层高度越接近,且在低气速下易于形成较良好的流化层,但随着气速增大,其影响逐渐减弱;在低气速下进气方式对中下二料层均匀性有较大影响,但随气速增大影响也减弱,底部进气方式更易达到较好的料层均匀性;流化床的排气方式对流化料层基本无影响。因此均匀的布料和较均匀的进气预分布有助于均化各料层高度,并拓宽多层流化床的操作弹性。  相似文献   

11.
Some results on particle image velocimetry (PIV) in 2-D freely bubbling fluidized beds are presented. The PIV applications were used in order to determine the initial particle velocity of bubble eruptions. A two-dimensional non-reacting fluidized bed was constructed to measure the origin of the ejected particles and the initial particle velocity distribution, using coarse sand particles. The bubble ejection mechanism was observed taking into account the origin of particles ejected, the initial particle velocity distributions as well as the effect of other neighbor exploding bubbles. Our results show that the assumption of linear dependence of initial velocity with the angle predicts the velocity faithfully only for purely vertical-ascent bubbles. Measurements of ejection velocities show that initial velocities in the combined layer are higher than those of the particles in the nose of the leading bubble. Avoiding coalescence of bubbles at the bed surface can lead to less particle entrainment out of the bed and consequently to shorter fluidized beds.  相似文献   

12.
在二维双组分鼓泡床实验装置上,采用高速摄像技术,对床内气泡的形状特性进行了研究,考察了不同形状气泡在床内的轴径向分布,探索了颗粒组成和操作气速对气泡形状的影响。结果表明:不同形状的气泡在鼓泡床内呈正态分布,球形度较好的气泡主要分布于床层底部和壁面附近,而细长的气泡则主要集中于床层中心区域。随着气体速率的增加,气泡的球形度和宽纵比降低,气泡形状趋于细长和不规则;随着重组分增加,气泡的球形度增大而宽纵比减小。双组分颗粒鼓泡流化床内气泡球形度的概率密度较单组分的分布更宽,而宽纵比的概率密度分布与添加的颗粒密度有关。  相似文献   

13.
The object of the work described here was to elucidate the effects of operation under pressure on the physical behaviour of gas fluidized beds. Extensive measurements of various bubble properties such as size, shape and rise velocity in beds of coarse powders (mean particle diameters of 184 μm and 450μm) operated at pressures of up to 81 bar were made by photographing the images created by irradiation of the bed with X-rays, and analysing the bubble silhouettes thereby obtained. Most of the results presented here are averages of some 200 individual measurements.

Experimental evidence to support the following picture of the effect of pressurization on the behaviour of freely bubbling gas fluidized beds is presented. Both bubble interaction (tendency to coalesce) and the incidence of bubble splitting increase with increasing pressure; the two are intimately connected. The nett results are a decrease in bubble size with increasing pressure over most of the pressure range and an increase in the tendency for bubbles to distribute non-uniformly in a radial direction. This latter tendency probably causes gross solids circulation in the bed, and this in turn leads to higher bubble rise velocities than those observed for single bubbles under similar conditions. The splitting mechanism accounting for the decrease in bubble size was found to be intrusion of the wake into the bubble void by the flow of gas through the wake region of a leading bubble during pair coalescence.

An updated review of other published work relating to the subject of experimental observations of the effects of pressure on gas fluidized beds is included in the form of a table.  相似文献   

14.
15.
A numerical study was conducted based on the gas-solid two-fluid model using the body-fitted coordinate system to analyze the behavior of particles and bubbles flow in bubbling fluidized beds without and with immersed tubes. The kinetic theory of granular flow was implemented in the model. The images of simulated instantaneous particle concentration and velocity gave the process of the formation, coalescence and eruption of bubbles. The effects of the tube pitch and superficial gas velocity on the fluidization in a bubbling fluidized bed were investigated. Calculated bubble frequencies without and with immersed tubes were in agreement with previous experimental and simulation findings. The wavelet multi-resolution analysis was used to analyze the simulated data of instantaneous particle concentration. From the random-like particle concentration fluctuations, the fluctuating components due to particle flow and bubble motion can be extracted based on the wavelet multi-resolution analysis over a time-frequency plane.  相似文献   

16.
should be addressed. The distributor was investigated for the purpose of design and scale up of large fluidized-bed combustors. Four orifice plates with different configurations were used to study the effect of distributor design on bubble formation and solid mixing. Experiments were carried out on a three-dimensional fluidized bed of 27.94 cm diameter and a two-dimensional bed with dimensions of 30.48cm ×1.27 cm. Motion pictures were used to study bubble formation and coalescence. Pressure profiles inside the three-dimensional bed were measured for several distributors to study bubble flow patterns, and tracer particles were used to study mixing patterns at various superficial velocities and particle sizes. The results show that the distributor plate with two-size orifices causes a non-uniform gas bubble flow inside the bed. This non-uniform gas bubble flow is associated with variations in local bed density and local voidage. Horizontal or radial solid circulation is also caused by this non-uniform gas bubble flow. The local bed density and voidage variations and the radial solid circulation cause the bubbles to move toward the area above the smaller orifices as the bubbles rise up and coalesce. This reduces the wall effect, and the bed is very uniformly fluidized when the two-size orifice plate with small holes in the center is employed.  相似文献   

17.
The influence of pressure on the bubble size and average bed voidage has been investigated experimentally and computationally in a circular three-dimensional cold-flow model of pressurized jetting fluidized bed of 0.2 m i.d. and 0.6 m in height with a central jet and a conical distributor, which roughly stands for the ash-agglomerating fluidized bed coal gasifier. The pressurized average bed voidage and bubble size in the jetting fluidized bed were investigated by using electrical capacitance tomography (ECT) technique. The time-averaged cross-sectional solids concentration distribution in the fluidized bed was recorded. The influence of pressure on the size of bubble and the average bed voidage in a pressurized fluidized bed was studied. Both experimental and theoretical results clearly indicate that there is, at the lower pressure, a small initial increase in bubble size decided by voidage and then a decrease with a further increase in pressure, which proves the conclusion of Cai et.al. [P. Cai, M. Schiavetti, G. De Michele, G.C. Grazzini, M. Miccio, Quantitative estimation of bubble size in PFBC, Powder Technology 80 (1994) 99-109]. At higher pressure, bubbles become smaller and smaller because of splitting. The average bed voidage increases gradually with the pressure at the same gas velocity. However, there is a disagreement between the experimental results and simulation results in the average bed voidage at the higher gas velocity, especially at the higher pressure. It suggests that the increase in density of gas with pressure may result in the drag increase and the drag model needs to be improved and revised at higher pressure.  相似文献   

18.
基于EMMS模型的气固鼓泡床的模拟及气泡特性的分析   总被引:3,自引:3,他引:0       下载免费PDF全文
吴迎亚  彭丽  高金森  蓝兴英 《化工学报》2016,67(8):3259-3267
基于EMMS曳力模型,采用双流体的方法对气固鼓泡床内的气固流动特性进行模拟,建立基于图像处理气泡特性的分析方法,重点研究了不同表观气速下气泡在床层内分布特性,包括气泡平均当量直径、气泡速度和气泡球形度的轴向分布,以及气泡的生命周期。研究结果表明,小气泡多集中在床层底部和壁面区域,而大气泡多集中在床层中间区域。随着表观气速的增加,床层高度不断增加,气泡的球形度降低,气泡的大小、出现频率、上升速度以及生命周期均增加;然而,当表观气速增大到一定程度,继续增加气速对气泡的上升速度影响不大。  相似文献   

19.
Reducing the size of gas bubbles can significantly improve the performance of gas-solid fluidized reactors. However, such a control of bubbles is difficult to realize without measures that either use a lot of energy or deteriorate the fluidization behavior. In this paper, we present the results of discrete particle simulations of an electric-field enhanced fluidized bed, and compare these results to experimental data.The simulations show a significant effect on the size of bubbles, both with horizontal and vertical electric-fields applied. When the field strength is increased to values higher than those used in the experiments, the particles are found to form strings in the direction of the electric field. At very high field strengths, defluidization is observed, consistent with the experiments.Through the analysis of the bubble behavior, it is concluded that moderate strength electric fields distribute gas more evenly at the bottom of the bed. As the bubbles rise through the bed, the coalescence rate is lower because of the guiding paths, or resistance, the particles form due to the field. This results in a smaller average bubble size in the higher region of the bed. The simulations presented here show how and why the electric fields reduce bubble size in electric-field enhanced fluidized beds.  相似文献   

20.
During the past three years we have developed a tentative cold bed hydrodynamic model for an idealized fluidized bed gasifier. The computer program calculates the pressure, the void fraction and the velocities for a single size solid and for a gas. The fluid bed never reaches a steady slate, but continually oscillates, as bubbles form, rise through the bed and collapse on top of the bed.

In this paper we show that the hydrodynamic model can predict bubbles forming in the fluidized bed. Photographically determined bubble sizes agree with the predicted bubble sizes. They increase with height of bed and with jet velocity. The model produces bubble splitting which agrees with observations at higher jet velocities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号