共查询到20条相似文献,搜索用时 0 毫秒
1.
Hybrid thin film photovoltaic structures, based on hydrogenated silicon (Si:H), organic poly(3-hexythiophene):methano-fullerenephenyl-C61-butyric-acid-methyl-ester (P3HT:PCBM) and poly(3,4ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) films, have been fabricated. Organic semiconductor thin films were deposited by spin-coating technique and were exposed to radio frequency plasma enhanced chemical vapor deposition (RF PECVD) of Si:H films at deposition temperature Td = 160 °C. Different types of structures have been investigated: H1) ITO/(p)SiC:H /P3HT:PCBM/(n) Si:H, H2) ITO/PEDOT:PSS/(i)Si:H/(n) Si:H and H3) ITO/PEDOT:PSS/P3HT:PCBM/(i)Si:H/(n)Si:H. Short circuit current density spectral response and current-voltage characteristics were measured for diagnostic of the photovoltaic performance. The current density spectral dependence of hybrid structures which contains organic layers showed improved response (50–80%) in high photon energy range (hν ≈ 3.1–3.5 eV) in comparison with Si:H reference structure. An adjustment in the absorbing layer thickness and in the contact material for ITO/PEDOT:PSS/(i)Si:H/(n)Si:H structure, resulted in a remarkably high short circuit current density (as large as 17.74 mA/cm2), an open circuit voltage of 640 mV and an efficiency of 3.75%. 相似文献
2.
The influence of a series of alkyl alcohols on the work function of PEDOT:PSS thin films is systematically investigated by Kelvin probe measurements. We show that the PEDOT:PSS work function can be increased stepwise from 5.2 eV for pristine PEDOT:PSS to 5.61 eV using either alcohols with different alkyl chain length or varying the amount of alcohol in mixtures with chlorobenzene. Moreover, we demonstrate the effect of work function modification on merocyanine based bulk heterojunction solar cells, resulting in improved values for the open-circuit voltage comparable to those obtained with high work function MoO3. Thus, the processing method presented herein can potentially serve as a simple, alternative route to adjustable and high work function electrodes while maintaining processability from solution. 相似文献
3.
Combined alternative electrodes for semi-transparent and ITO-free small molecule organic solar cells
Yong Hyun Kim Christoph Sachse Alexander A. Zakhidov Jan Meiss Anvar A. Zakhidov Lars Müller-Meskamp Karl Leo 《Organic Electronics》2012,13(11):2422-2428
We investigate various electrode combinations of bottom and top contacts for organic photovoltaic (OPV) cells. Silver (Ag), indium tin oxide (ITO), poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), and silver nanowires (AgNW) are used as bottom electrodes. As top electrodes, thin silver layers (t-Ag) and free-standing carbon nanotube (f-CNT) sheets are employed. The manufactured zinc phthalocyanine (ZnPc): fullerene C60 small molecule bulk heterojunction OPV cells with different kinds of bottom electrodes show efficiencies of 1.9∼2.2% and 1.1∼1.5%, when comprised of t-Ag and f-CNT top contacts, respectively. We demonstrate alternative electrodes beyond ITO, silver, and aluminum, which can be readily used for organic photovoltaics technology. 相似文献
4.
The electrical and photocurrent characteristics resulting from low light ambient degradation of organic bulk heterojunction solar cells are reported. The degradation is associated with the contacts and the active layer shows no evidence of any change in properties. Ambient exposure induces an exponential current–voltage characteristic in the contact region. An empirical model for the cell current–voltage characteristics shows how the cell properties may be corrected to recover the characteristics of the active layer. Modeling compares the effects of ohmic and exponential contact resistance on the solar cell response of a typical cell. 相似文献
5.
Jaehoon Jeong Sungho Woo Soohyeong Park Hwajeong Kim Seung Woo Lee Youngkyoo Kim 《Organic Electronics》2013,14(11):2889-2895
Here we report the wide range thickness effect of hole-collecting buffer layers (poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)) on the performance of polymer:fullerene solar cells with blend films of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM). The thickness of the PEDOT:PSS layers was controlled from 3 nm to 625 nm, followed by characterizations such as optical transmittance, electrical resistances in the in-plane and out-of-plane directions, work functions, contact angles, and device performances. Results showed that the optical transmittance was gradually decreased with the PEDOT:PSS thickness but a maximum value was measured for other properties in the thickness range of 10–30 nm. The device performance was noticeably improved with only 3 nm-thick PEDOT:PSS layer, while it was almost similar in the thickness range of 30–225 nm in the presence of gradual decrease in the surface roughness. The similar device performance between 30 nm and 225 nm has been assigned to the compensation effect between the reduced electrical resistance (increased conductivity) and the decreased optical transmittance as the thickness of the PEDOT:PSS layer increased. 相似文献
6.
Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) has been widely used as the hole transport material in optoelectronic devices. To avoid the cross talk among different crossbars, PEDOT:PSS with low conductivity is required. It thus has a high loading of the non-conductive PSSH. The PSSH-to-PEDOT weight ratio is 6 for Clevios P VP Al 4083 that is the most popular polymer as the hole transport layer. However, the acidic PSSH brings severe problems to the device stability and performance. Here, PEDOT:PSS solutions with low acidity can be prepared through a facile treatment of PEDOT:PSS solution by probe ultrasonication. Two grades of PEDOT:PSS, Clevios PH1000 and Clevios P, with a PSSH-to-PEDOT weight ratio of 2.5 were treated by probe ultrasonication. The ultrasonication can lower the viscosity and the colloidal sizes of PEDOT:PSS solutions and conductivity of PEDOT:PSS films. The pH value of probe-ultrasonicated Clevios P was 2.12, higher than that (1.77) of pristine Clevios P VP Al 4083. The ultrasonication-treated PEDOT:PSS solutions were used as hole transport layer in polymer solar cells and perovskite solar cells. The photovoltaic performances of these solar cells are comparable to that of control devices employing Clevios P VP Al 4083 PEDOT:PSS as the hole transport layer. 相似文献
7.
8.
We report a simple processing method to simultaneously improve the efficiency and stability of organic solar cells (OSCs). Poly(4-styrene sulfonate)-doped poly(3,4-ethylenedioxy-thiophene (PEDOT:PSS), widely used as hole transport layer (HTL) in OSCs, tends to accelerate the degradation of devices because of its hygroscopic and acidic properties. In this regard, we have modified PEDOT:PSS to reduce its hygroscopic and acidic properties through a condensation reaction between PEDOT:PSS and poly(ethylene glycol) methyl ether (PEGME) in order to improve the efficiency and stability of OSCs. As a result, the power conversion efficiency (PCE) increased by 21%, from 2.57% up to 3.11%. A better energy level alignment by the reduced work function of the modified PEDOT:PSS with a highest occupied molecular orbital (HOMO) level of poly(3-hexylthiophene-2,5-diyl) (P3HT) is considered the origin of the improved the efficiency. The half-life of OSCs with PEDOT:PSS modified with PEGME buffer layer also increased up to 3.5 times compared to that of devices with pristine PEDOT:PSS buffer layer. 相似文献
9.
Conducting p-type polymer of poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) has been widely used for organic optoelectronics, particularly as a hole transport layer for organic solar cells. While the aged PEDOT:PSS dispersion impacts device performance, the aging of PEDOT:PSS dispersion have not been well investigated. Moreover, the recovery process of aged (two-year-old) PEDOT:PSS dispersion has not been demonstrated yet. Herein, it is found that aqueous PEDOT:PSS dispersion undergoes extensive phase separation during the aging process, resulting in both nanoscale and macroscale hydrophobic PEDOT-rich agglomerates. When the aged PEDOT:PSS thin film is integrated into P3HT:PCBM organic solar cells, the PEDOT-rich agglomerates trap the photogenerated holes at the PEDOT:PSS/P3HT interface, resulting in poor extraction efficiency in organic solar cells. To recover a hole transport functionality from aged PEDOT:PSS, three different solvents such as isopropyl alcohol (C3H7OH), ethanol (C2H5OH) and methanol (CH3OH) are investigated. Among them, it is found that isopropyl alcohol (IPA) yielded very uniform PEDOT:PSS thin film layer. This is because hydrophobic functional groups of IPA solvent facilitated the preferential solvation of phase separated hydrophobic PEDOT-rich agglomerates. However, when non-optimal concentration of IPA solvents was added into the aged PEDOT:PSS dispersion, the size of PEDOT-rich agglomerates was adversely enlarged. When organic solar cells were fabricated using more than a two-year-old PEDOT:PSS that was treated with IPA solvent, the resulting device performance of organic solar cells was fully recovered and became comparable or better than that of organic solar cells fabricated with fresh PEDOT:PSS. 相似文献
10.
S. van Reenen M. Scheepers K. van de Ruit D. Bollen M. Kemerink 《Organic Electronics》2014,15(12):3710-3714
By simultaneously measuring the Seebeck coefficient and the conductivity in differently processed PEDOT:PSS films, fundamental understanding is gained on how commonly used processing methods improve the conductivity of PEDOT:PSS. Use of a high boiling solvent (HBS) enhances the conductivity by 3 orders of magnitude, as is well-known. Simultaneously, the Seebeck coefficient S remains largely unaffected, which is shown to imply that the conductivity is improved by enhanced connectivity between PEDOT-rich filaments within the film, rather than by improved conductivity of the separate PEDOT filaments. Post-treatment of PEDOT:PSS films by washing with H2SO4 leads to a similarly enhanced conductivity and a significant reduction in the layer thickness. This reduction strikingly corresponds to the initial PSS ratio in the PEDOT:PSS films, which suggests removal and replacement of PSS in PEDOT:PSS by HSO4− or SO42− after washing. Like for the HBS treatment, this improves the connectivity between PEDOT filaments. Depending on whether the H2SO4 treatment is or is not preceded by an HBS treatment also the intra-filament transport is affected. We show that by characterization of S and σ it is possible to obtain more fundamental understanding of the effects of processing on the (thermo)electrical characteristics of PEDOT:PSS. 相似文献
11.
Solvent treatment has been widely used to improve the device performance of both Organic Light Emitting Diodes (OLEDs) and Polymer Solar Cells (PSCs). One of the proposed mechanisms is the modification of the buried PEDOT:PSS layer underneath the organic active layer by the permeating solvent. By measuring the lateral electric conductivity of the PEDOT:PSS layer, the 3 orders of magnitude's enhancement on the conductivity after solvent treatment confirms that the solvent permeates through the top organic active layer and modifies the PEDOT:PSS layer. Using a “peel-off” method, the buried PEDOT:PSS layer is fully exposed and studied by UV–vis spectra, XPS spectra, and c-AFM images. The data suggest that the permeating solvent dissolves PSS, changes PEDOT:PSS′ core-shell structure into a linear/coiled structure, and moves PSS from the bulk to the surface. As a result, PEDOT becomes more continuous in the bulk. The continuous conducting PEDOT-rich domains create percolating pathways for the current which significantly improve electric conductivity. 相似文献
12.
《Advanced Electronic Materials》2017,3(5)
Conducting polymer (CP) is a key component of wearable, flexible, and semitransparent electronics. As a classic CP, highly conductive PEDOT:PSS has been achieved on glass via strong acid treatments. However, it is a great challenge to realize highly conductive stretchable films of PEDOT:PSS, due to limits of strong acid treatments and poor intrinsic stretchability of as‐cast films. Herein, a highly conductive stretchable all‐plastic electrode of CP embedded into PDMS elastomers (PEDOT:PSS–PDMS) via a dipping‐embedded transfer method is reported. The method enables large‐area PEDOT:PSS films that are transferred from quartz to PDMS. The PEDOT:PSS–PDMS films have high conductivity of 2890 S cm−1 and an enhanced stretchability of 20% strain. Underlying mechanisms of high yield of the large‐area productions, high conductivity, and improved stretchability are investigated. Furthermore, two types of devices including wearable strain sensors and semitransparent organic solar cells (OSCs) are fabricated using the films. The wearable sensors show high gauge factor of ≈22 under 20% strain and the OSCs exhibit a power conversion efficiency of 3.75% and 3.46% when lights are illuminated from PDMS and indium tin oxide, respectively. 相似文献
13.
Realization of synchronous improvement in optical management and electrical engineering is necessary to achieve high‐performance photovoltaic device. However, inherent challenges are faced in organic‐silicon heterojunction solar cells (HSCs) due to the poor contact property of polymer on structured silicon surface. Herein, a remarkable efficiency boost from 12.6% to over 16.7% in poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate)/n‐silicon (PEDOT:PSS/n‐Si) HSCs by independent optimization of hole‐/electron‐selective contacts only relying on solution‐based processes is realized. A bilayer PEDOT:PSS film with different functionalizations is utilized to synchronously realize conformal contact and effective carrier collection on textured Si surface, making the photogenerated carriers be well separated at heterojunction interface. Meanwhile, fullerene derivative is used as electron‐transporting layer at the rear n‐Si/Al interface to reduce the contact barrier. The study of carriers' transport and independent optimization on separately contacted layers may lead to an effective and simplified path to fabricate high‐performance organic‐silicon heterojunction devices. 相似文献
14.
《Organic Electronics》2014,15(8):1849-1855
The conductivity enhancement of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) by dynamic etching process was investigated to introduce the outstanding and simplest method for soft electronics. Four different samples which were pristine PEDOT:PSS, PEDOT:PSS doped with 5 wt.% DMSO, PEDOT:PSS with dipping process, and PEDOT:PSS with dynamic etching process were prepared to compare the properties such as conductivity, morphology, relative atomic percentage, and topography. All samples were characterized by four point probe, current atomic force microscopy (C-AFM), X-ray photoelectron spectroscopy (XPS), and UV–visible spectroscopy. The conductivity of the sample with dynamic etching process showed the highest value as 1299 S/cm among four samples. We proved that the dynamic etching process is superior to remove PSS phase from PEDOT:PSS film, to flow strong current through entire surface of PEDOT:PSS, and to show the smoothest surface (RMS 2.28 nm). XPS analysis was conducted for accurate chemical and structural surface environments of four samples and the relative atomic percentage of PEDOT in the sample with dynamic etching was the highest as 29.5%. The device performance of the sample with the dynamic etching process was outstanding as 10.31 mA/cm2 of Jsc, 0.75 eV of Voc, 0.46 of FF, and 3.53% of PCE. All properties and the device performance for PEDOT:PSS film by dynamic etching process were the most excellent among the samples. 相似文献
15.
L. Basiricò P. Cosseddu A. ScidàB. Fraboni G.G. MalliarasA. Bonfiglio 《Organic Electronics》2012,13(2):244-248
We report on the fabrication and characterization of inkjet-printed, all-Organic ElectroChemical Transistors (OECTs) entirely realized by a conducting polymer, namely poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonic acid) (PEDOT:PSS). The transistors utilized saline as the electrolyte and exhibited output characteristics typical for operation in depletion regime. The transfer characteristics could be tuned on the basis of device geometry, with the ratio between the area of the channel and the area of the gate electrode determining the transconductance. This work paves the road for the low-cost, print-on-demand fabrication of circuits for applications in bio-sensors and disposable electronics. 相似文献
16.
Herein, we report about an efficient and stable organic photovoltaic that uses a poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS) and molybdenum oxide (MoOX) mixture for the anode interfacial layer, and that can reach 4.43% power conversion efficiency (PCE) under AM1.5 conditions. Utilizing PEDOT:PSS:MoOX (1:1), the shelf lifetime of poly(3-hexylthiophene) (P3HT), and indene-C60 bisadduct (ICBA)-based solar cells without encapsulation, can be realized with only a 25% deterioration after 672 h of storage in air. Furthermore, we compare the photovoltaic performance of the P3HT:ICBA-based organic photovoltaic with PEDOT:PSS, and PEDOT:PSS:MoOX, in which PEDOT:PSS:MoOX has outperformed the others. In addition, the water vapor transmission rate of PEDOT:PSS:MoOX is 0.17 gm/(m2 day), which is much less than that of PEDOT:PSS. 相似文献
17.
Je-Hong Choi Hak-Jong Choi Ju-Hyeon Shin Hyeong-Pil Kim Jin Jang Heon Lee 《Organic Electronics》2013,14(12):3180-3185
In order to improve the conversion efficiency of organic photovoltaic (OPV) cells, nano-patterned poly (3,4-ethylenedioxythiophene) poly (styrenesulfonate) (PEDOT:PSS) was used as a hole transfer layer (HTL). Using nanoimprint lithography, a process that is easily applied to large-area substrates, a spherical array of PEDOT:PSS droplets was formed. The effect of the PEDOT:PSS nanostructure was characterized by optical and electrical measurements. Because the hemispherical array of PEDOT:PSS scatters light efficiently, absorption of the incident light increases when the nanostructured layer is employed. The conversion efficiency of the nano-patterned OPV cells is 25% larger than that of non-patterned OPV cells, due to the increase in short-circuit current (Jsc). 相似文献
18.
Soo Won Heo Kyeong Hoon Baek Tae Ho Lee Joo Young Lee Doo Kyung Moon 《Organic Electronics》2013,14(6):1629-1635
Inverted polymer solar cells were fabricated by adding the amphiphilic surfactant ‘Surfynol 104 series’ to Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as a anode buffer layer by solution process. With the introduction of Surfynol 104 series-added PEDOT:PSS, it was able to form a homogeneous film by adjusting the wettability of a hydrophobic poly(3-hexylthiophene) (P3HT):[6,6]-phenyl C61-butyric acid methyl ester (PCBM) film. With decrease in series resistance (RS) and increase in shunt resistance (RSH), as a result, the short circuit current density (JSC), open circuit voltage (VOC) and fill factor (FF) of the optimized device were 10.2 mA/cm2, 0.63 V and 61.3%, respectively, calculated the power conversion efficiency (PCE) was 4.0%. In addition, the air stability of the fabricated device was improved. 相似文献
19.
Michael Vosgueritchian Darren J. Lipomi Zhenan Bao 《Advanced functional materials》2012,22(2):421-428
Highly conductive and transparent poly‐(3,4‐ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) films, incorporating a fluorosurfactant as an additive, have been prepared for stretchable and transparent electrodes. The fluorosurfactant‐treated PEDOT:PSS films show a 35% improvement in sheet resistance (Rs) compared to untreated films. In addition, the fluorosurfactant renders PEDOT:PSS solutions amenable for deposition on hydrophobic surfaces, including pre‐deposited, annealed films of PEDOT:PSS (enabling the deposition of thick, highly conductive, multilayer films) and stretchable poly(dimethylsiloxane) (PDMS) substrates (enabling stretchable electronics). Four‐layer PEDOT:PSS films have an Rs of 46 Ω per square with 82% transmittance (at 550 nm). These films, deposited on a pre‐strained PDMS substrate and buckled, are shown to be reversibly stretchable, with no change to Rs, during the course of over 5000 cycles of 0 to 10% strain. Using the multilayer PEDOT:PSS films as anodes, indium tin oxide (ITO)‐free organic photovoltaics are prepared and shown to have power conversion efficiencies comparable to that of devices with ITO as the anode. These results show that these highly conductive PEDOT:PSS films can not only be used as transparent electrodes in novel devices (where ITO cannot be used), such as stretchable OPVs, but also have the potential to replace ITO in conventional devices. 相似文献
20.
Xinghua Liu Zhuoyu Ji Deyu Tu Liwei Shang Jiang Liu Ming Liu Changqing Xie 《Organic Electronics》2009,10(6):1191-1194
In this paper, the reproducible nonpolar resistive switching is demonstrated in devices with the sandwiched structure of Au/poly(3,4-ethylene-dioxythiophene): polystyrenesulfonate/Au for nonvolatile memory application. The switching between high resistance state (OFF-state) and low resistance state (ON-state) does not depend on the polarity of the applied voltage bias, which is different from both the WORM characteristics and the bipolar switching characteristics reported before. The resistive ratio between the ON- and OFF-state is on the order of 103 and increases with the device area decreasing. Both the ON- and OFF-state of the memory devices are stable, showing no significant degradation over 104 s under continuous readout testing. It is proposed that the reduction and oxidation of PEDOT: PSS film might be the switching mechanism. 相似文献