首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
锂离子电池在工作过程中产生的热效应会影响其温度和电化学性能,并极大地影响电池的安全性和使用寿命.分析电池在放电过程的热特性变化规律及产热机制,评估电池内部不同性质的产热对温度变化的相互作用,对于电池热管理系统的设计起到至关重要的作用.因此,本工作以富镍三元锂离子电池为研究对象,建立了基于动态参数响应的电化学热耦合模型,在0℃和40℃环境温度下分别进行了 0.3 C、1C放电与温升实验验证,验证结果表明耦合模型具有较好的精确性和可靠性,能够准确地分析电池热特性.基于验证后的模型,研究了富镍锂离子电池在不同放电倍率、环境温度、换热环境下的温升特性,并进一步分析了电池内部生热机理及发热特性.结果表明:放电倍率的增大使得电池的总产热量迅速增大,同时加剧了电池内部的温度不均匀性,正负极熵热系数较大的差异性使得正极区域产热较大而负极产热较为平缓.研究结果能够为锂离子电池的热性能评估和电池组的热管理系统设计提供一定的指导意义.  相似文献   

2.
锂离子电池由于放电过程产生大量的热,不可避免的使得电池温度升高。研究大倍率放电时的电池温升,忽略电化学反应热,进一步简化原有的生热模型。为了得到电池温度分布,从电池内部结构出发,根据电流密度在集流板上的分布以及极耳处的收缩/扩散效应,分析集流板上电流密度的分布规律,从而建立电池的电-热耦合模型。通过生热模型模拟电池放电过程的温升现象,并与实验结果对比,发现模拟结果与实验结果能够很好地吻合。文章给出了电池在不同放电倍率条件下放电终了时的温度分布图,并解释了造成这种分布现象的原因。  相似文献   

3.
针对大容量方形锂离子动力电池组在放电时存在电池表面温度过高与温度一致性较差问题,以电动汽车用某方形磷酸铁锂电池为研究对象,分别设计了具有单向流通结构和双向对流结构的蛇形管路电池组热管理系统。为了考察两种热管理系统的冷却性能,首先建立了单体电池的电化学-热耦合模型,模型经试验验证后,对不同质量流量下的电池组最高温度、冷却时间以及最大温差进行了对比仿真研究,结果表明:随着质量流量的增大,两种结构的电池组最高温度均呈下降趋势;在不同质量流量下,单向流通结构冷却时间均小于双向对流结构,双向对流结构的电池组的最大温差均小于单向流通结构;在大质量流量下,由于冷却液流速过快,会导致冷却液温度升高,从而影响冷却效果。  相似文献   

4.
研究电池电化学过程产热对锂离子电池的热管理至关重要。本工作建立了三元NMC锂离子电池的电化学-热耦合模型,首先通过对该电池进行不同倍率的放电与温度实验测试,验证了该模型在电压和温度变化预测准确性。然后针对不同温度下的表现进行模拟仿真研究。在室温下,无论倍率大小,负极产热总是小于正极产热,虽然负极的极化热高于正极,但其可逆吸热较大,导致产热水平低于正极。而随着放电倍率的增加,正极产热所占比例减小,负极所占比例先增加后减小,而集流体产热所占比例持续增加。然而,低温条件下的电池放电表现出与室温情况不同的产热特性,首先,低温导致低倍率负极产热率比例大大增加,负极可逆热为总可逆热的主要贡献热。而高倍率负极产热率减少,正极则呈相反趋势。其次在低温下放电时间随倍率增加呈现不同趋势,高倍率下放电电压快速降低导致放电不完全,在低倍率0.5~1 C放电运行时出现了电压反弹现象但基本放电完全,这是由于低温限制了负极颗粒内部锂离子及时向外扩散,造成电阻增加与电压快速降低,同时大量产热导致自身温升,从而在低倍率下获得电压反弹并保持持续放电的能力。  相似文献   

5.
良好的热管理系统是锂离子电池安全及高效使用的保证,电池热管理需要确保电池在安全温度范围内且电池组内最大温差不超过5℃。文中运用UDF建立生热速率随放电时间变化的内热源模型,研究单体电池及电池组在不同工况条件下电池的热性能及小通道对锂电池热管理系统的冷却性能。电池侧以电池组的最高温度、最大温差以及不均匀度反映小通道对电池组热性能的影响。小通道侧运用努塞尔数反映小通道的对流传热特性。模拟结果显示,锂离子电池的放电速率越大,电池内部温度升的越快,电池所处的环境对电池热性能影响较大。同时,小通道中冷却流体的流速和种类对锂离子电池的最高温度、最大温差以及不均匀度影响显著。  相似文献   

6.
为了研究动力汽车用锂电池温度场分布,建立了单体电池及电池组仿真模型,通过实验与FLUENT软件模拟验证的方式分析单体电池温度场。通过仿真分析讨论电池组温度场,采用三种不同的进出风方式进行空气强制冷却电池组,分析了进出风口有倾角与无倾角的不同温度控制效果,结果表明带有倾角的进出风方式有利于降低电池组最高温度。采用电池组壳体侧面开孔方式进行电池组热管理,可有效改善电池组放电过程的温度分布均匀性。  相似文献   

7.
为了探究电池单体排布对锂电池组热管理性能的影响,采用COMSOL Multiphysics软件建立相变冷却耦合空气冷却锂电池组散热模型,模拟不同单体电池间距以及相变材料用量下电池组温度场变化情况.研究发现,当单体电池均匀排布时,随着电池间距的增大,相变冷却系统内温差先降低后升高,在10 mm时温度均匀性最优.维持相变材...  相似文献   

8.
通过某18650型NCM锂离子电池在恒温箱温度为40℃、25℃时的0.5 C、1 C、2 C放电倍率实验与0℃、-25℃时0.5 C倍率的放电实验,得到不同温度与放电倍率下电池的电压与温度曲线,并验证电化学-热耦合模型的可靠性,在25℃时模型精确度最高,电压误差为0.07 V,温度误差为0.8℃,-25℃时精确度最低,电压误差为0.6 V,温度误差为1.5℃.借助模型进行25℃时电池的电极产热分析,并模拟25℃温度条件下2 C放电时的温度场分布,放电结束时电池正负极极耳处温度最高,具体数值为34.8℃,与气流正对的电池表面的温度最低,数值为34℃,在气流后侧距电池中心50 mm处的模型边界处受电池产热与气流的影响温度上升4℃.  相似文献   

9.
为研究动力电池组的温度特性以及维持其工作在最佳的温度范围内,以锂离子电池为研究对象,设计了一种新型混合动力汽车的电池热管理系统,利用空调系统和发动机排气系统来调控电池组的温度。建立了锂电池组的三维瞬态产热数值模型,以电池组的三维尺寸和进风口流速为输入参数,以降低电池组的最大温升和提高电池组的温度均匀性为输出参数,利用FLUENT仿真软件和DesignXplorer模块进行联合优化设计了电池组的结构。优化后的电池组的温升比优化前降低了5.39 K,电池组温差降低了6.41 K。分析了恒倍率放电以及对流换热系数对单体电池温升的影响,研究表明:放电倍率越大电池温升越快,放电结束后电池的温度越高,在对流换热系数小于30 W/(m2·K)时,散热效果明显。对电池组在不同条件下加热或者冷却进行了仿真分析,验证了该电池热管理系统的可行性。  相似文献   

10.
采用实验测试与数值仿真的方法对NCR18650A三元锂电池组在1 ~ 3 C放电和1.6 C充电过程的温升特性进行测试,同时验证所建立电池产热模型的准确性。结果显示,实验测试结果与电池产热模型仿真结果之间的相对误差在合理范围内,满足工程应用需求。电池组在自然冷却的情况下,仅在1 C放电状态下符合其最佳工作区间42.5 ~ 45.0℃的要求,3 C放电倍率下最高温度为89.4℃。提出并建立基于热电致冷主动热管理模型,将热电致冷组件设置在电池组上方,致冷功率为50 W时可有效控制电池组3 C放电过程的温度,在最佳工作区间实现电池单体温差小于5℃,抑制电池组的热失效并实现良好的均温性。  相似文献   

11.
锂离子电池负极析锂可能会诱发热失控,进而导致安全事故。而通过优化电池设计参数能够有效减少析锂副反应的发生,因此本工作提出一种基于三维电化学热耦合析锂模型的锂离子电池参数设计优化方法。首先,将模型参数进行分类,分别采用实验、精确测量、文献查找和参数辨识等方法获取相应的参数。同时加入可逆锂重嵌入机制和产热模型,建立三维电化学热耦合析锂模型。模型建立完成后,对模型精度进行验证,验证结果表明模型可以较好地模拟电池在常温和低温下端电压的变化,并且能够定量描述在低温大倍率充电期间电池内部的析锂程度、温度分布等非均一现象。最后,通过分析电极尺寸和极耳位置,研究电池设计参数对非均一析锂的影响。仿真结果表明:电极长度增加会导致电极区域温度差异和电流密度的不一致性增大,综合影响下使电池析锂时间略有提前,但对电池总体析锂程度影响较小;电池极耳位置处于长度方向的轴线对侧时能够有效缓解负极析锂,相对析锂程度降低了16.7%。  相似文献   

12.
保持合适的运行温度是锂离子电池高效、安全、长寿命的保证,因而对其进行有效的热管理是非常有必要的。本文针对圆柱形锂离子电池,设计了嵌套电池表面的方形金属外壳,以强化电池散热和单体电池间传热。对比自然对流条件下电池单体加壳和无壳时不同放电倍率的温升情况、多个电池并联的温升情况,以及不同通风功率下多个电池并联时嵌套不同外壳的温升情况,发现加壳可以有效促进电池(组)散热。另外,设计了电池组内不同单体电池出现放电不均衡情况,以检验嵌套外壳对减小电池组内单体电池间温差的效果,结果表明,自然对流条件下,加壳后单体电池间最大温差可以降低10℃以上。  相似文献   

13.
动力锂电池在快速充放电过程中,会产生大量的热量,具有热积聚热失控的风险,要对电池进行热管理。本文首先建立了电池电化学热耦合模型,对电池的温升特性进行研究,然后设计了基于复合相变材料(CPCM)的电池热管理系统,对电池在高倍率放电过程中进行控温管理,最后,比较了不同电池间距情况下,电池热管理系统对电池温度和温差的控制效果。数值仿真结果表明,单电池在3 C倍率放电过程中,电池最高温度为58.9℃,而当采用复合相变材料对电池冷却时,即使在35℃的环境温度下,也可以有效把电池最高温度控制在46.1℃,温差控制在3.6℃,从而能确保电池在适宜工作温度内安全运行,延长电池组的使用寿命和提高电池安全性能。更重要的是,通过对复合相变材料的固相率进行分析表明,固相率不为0时,可以有效控制电池温度和温差,而当热管理系统中的复合相变材料固相率为0时,电池组温度和温差均快速升高,因此通过对复合相变材料固相率指数进行分析,有助于复合相变材料的应用及热管理系统的优化。  相似文献   

14.
针对圆柱型锂离子电池组散热问题,设计了一种新型的相变材料(PCM)-水套式液冷耦合散热结构模型.首先研究了电池组在PCM模型的散热下,不同电池间距对电池组表面温度的影响,并得出PCM模型的最佳电池布局.然后根据PCM模型的最佳电池布局,优化PCM-水套式液冷耦合散热结构模型,即找出PCM散热模型的最佳流道结构.通过仿真分析结果表明,在6流道结构模型下,电池之间的最佳间距为8 mm;PCM-水套式液冷耦合散热模型的效果最佳,在3 C和5 C高倍率放电时,电池组的表面最高温度分别为33.78、41.11℃,相比于同尺寸PCM散热模型的最高温度,分别降低了7.23、1.06℃.采用PCM-水套式液冷耦合散热模型,电池之间的最大温差均维持在5℃以内.结果表明:该新型的PCM-水套式液冷耦合散热结构能在一定程度上保证电池组的正常工作,并提高电池组的安全性和耐用性.  相似文献   

15.
建立了方形锂电池瞬态产热模型,将软包锂电池简化为各向异性的叠层式复合材料,确定了模型中的热物性参数和力学参数;使用ANSYS软件,利用顺序热-结构耦合方式,模拟了电池瞬态温度场和热应力场分布。研究结果表明,电池中心区域温度较高,且受压应力,侧边温度较低,且受拉应力;电池各边出现应力集中,且最大Mises应力随放电电流增大而增大,随环境温度升高而减小;最大形变发生在电池高度方向两端,且随放电电流增大和环境温度升高而增大。  相似文献   

16.
随着小型化、高比功率热电池的发展,其对高压正极材料的需求也越来越迫切.贫锂相磷酸铁锂(LixFePO4)具有优异的热稳定性和高的电极电位,具备热电池正极材料的应用潜力.为此,文中通过电化学方法成功制备了LixFePO4正极材料,并对其进行高温充放电性能研究.结果 表明700℃工作温度下,基于贫锂相LixFePO4的单体...  相似文献   

17.
动力电池是新能源汽车关键部件,为进一步探究其热失控机理及影响因素,总结热失控发展过程,利用COMSOL软件构建锂离子电池单体模型,结合仿真实验结果详细分析其影响因素,并提出一款利用隔热罩、隔热盖板、隔热底座和可滑动扩容盒延缓热失控效果的可延缓热失控的汽车电池包。研究结果表明:热失控过程大致分为加热阶段、喷射和燃烧阶段、熄灭阶段,受4种副反应产热影响;在超过445.08K的高温环境下,长时间工作的锂离子电池易发生热失控,失控热源关键在正极活性材料与电解液分解反应;当电池实际温度超过500 K时,温度若无法及时控制将导致火灾事故发生;同时,对流传热系数越高,电池温度变化越快;初始温度越高,热失控可能性越大。  相似文献   

18.
锂电池放电过程中的产热受电池内部电化学反应和欧姆效应影响,电池产热由电池化学与动力学决定,而电池动力学依赖于电池运行条件和设计参数。锂电池的六个温度依赖性参数对锂电池的放电过程中的产热速率具有影响,包括固相活性颗粒和电解液中的锂离子扩散系数、反应速率常数、电极开路电压、电解液离子电导率、热力学因子和阳离子迁移数。基于LiFePO_4圆柱形电池建立了伪二维电化学-热耦合模型,研究电池在恒流放电过程中的产热速率,以及正极、隔膜和负极各部分的产热速率和所占比例。结果表明,总产热功率随反应热的波动而变化,其中正极电极层中反应热占比最大,负极电极层中极化产热所占比例高于正极,而隔膜中的产热主要来源自欧姆热。不同对流传热系数条件下,电池的表面温度和内部温度差都不同,因此要合理的采取电池热管理措施。  相似文献   

19.
温度对于锂电池的性能、安全及使用寿命有着很大的影响。针对锂电池放电过程中的发热问题,利用Space Claim建立了额定容量为14.6 Ah的LiMn_2O_4正极/石墨阳极方形锂电池三维模型,采用Fluent软件中的MSMD Battery Model模块对放电倍率为0.5C、2C、3C、5C下锂电池的温度场分布进行模拟研究,并与实验结果进行对比验证,研究结果表明:模拟结果与实验数据基本吻合,随着放电过程的进行,电池温度逐渐升高,温度最高处基本位于远离电极的底部区域,放电倍率越高电池的升温速率越快,随之温度也越高。  相似文献   

20.
分别利用Hypermesh和Fluent等软件建立某电动汽车锂离子电池组散热系统的仿真模型并进行计算,分析该散热模块及电池组的温度变化。结果表明,冷却通道入口存在明显的高速涡流,在高速流区换热比较明显,但冷却液流动不均匀,电池组及电池单体的温度均匀性较差。对冷板结构进行优化和仿真分析,发现冷却通道进出口处存在的高速流区分布范围较广,每个流场速度分布较均匀,整体换热效果较好,电池组的温差减小,电池组的温度一致性得到明显改善。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号