首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了提高人脸识别效率,提出了一种基于PCA、LDA和SVM算法融合的人脸识别方法。使用主成分分析(PCA)将人脸图像变换到新的特征空间中,消除图像特征间的相关性和噪声,提取人脸全局特征,在实验阶段取较多的投影方向使其尽可能多的保持原始信息;使用线性判别分析(LDA)算法进一步投影变换降低数据维度;使用支持向量机(SVM)分类识别。将PCA、LDA和SVM三种算法的优点结合起来,在ORL数据库上进行仿真实验,结果表明该方法的识别率可达99.0%。  相似文献   

2.
人脸识别是计算机视觉和图像模式识别领域的一个重要技术。主成分分析(PCA)是人脸图像特征提取的一个重要算法。而支持向量机(SVM)有适合处理小样本问题、高维数及泛化性能强等多方面的优点。文章将两者结合,先用PCA算法进行人脸图像特征提取,再用SVM进行分类识别。通过基于ORL人脸数据库的计算机仿真实验表明,该方法具有很好的可行性和实际意义。  相似文献   

3.
基于SNPE和SVM的人脸识别   总被引:1,自引:0,他引:1       下载免费PDF全文
在人脸识别方面,传统的特征提取方法大都是线性方法,不能很好保持样本的拓扑结构。分类方面,支持向量机能够尽量提高学习的泛化能力,防止过学习,是一种很好的分类器。提出了一种基于SNPE和SVM的人脸识别方法。采用有监督模式确定NPE算法中的K值。SNPE算法旨在保持数据的局部流型结构,而且相对于近期提出的LLE算法,它能够适用于训练样本和测试样本,具有更大的实用型。结合两分类支持向量机级联模型进行人脸识别,在ORL人脸数据库上实验表明,算法具有稳健性、快速性等优点,实验效果令人满意。  相似文献   

4.
为了进一步研究人脸识别问题文章融合HOG特征与PCA算法对人脸进行识别研究。首先计算人脸图像的方向梯度直方图(HOG),将输出的每一个特征向量纵向堆叠为一个二维矩阵。然后使用主成分分析(PCA)进行特征降维,减少特征间的相关性和噪声。最后使用支持向量机(SVM)进行分类识别。整个算法模型在ORL人脸数据库中进行实验,最终结果显示识别准确率为96.0%;使用ROC曲线评价该方法的优劣得到曲线下的面积为0.9898。  相似文献   

5.
为了提高人脸识别的识别率,本文提出了一种基于直方图均衡化、PCA和SVM算法的人脸识别。首先将人脸图像进行直方图均衡化,这样可以很好的增强图像的对比度。然后使用主成分分析(PCA)对图像进行降维和特征提取,可以减少图像识别的计算量,有效的提高识别的效率。最后,再用支持向量机(SVM)进行分类识别。在ORL人脸数据库上进行了使用验证,表明该方法能提高人脸识别的识别率。  相似文献   

6.
基于PCA和SVM提出了一种新的人脸分割法,将双眼、额头、鼻子、嘴等可以明显表征人脸的六类特征提取出来,舍弃双颊以及耳朵等特征量少的部位。融合上述人脸的特征识别结果,运用支持向量机的方法进行分类识别,实验结果表明,文章所提出的PCA与SVM融合的新的人脸分割方法能有效地对人脸进行分类,极大地提升识别率。  相似文献   

7.
对于一种有效的人脸识别方法,特征选择是极为重要的问题。而小波多分辨率分析可以获得对人脸识别有用的低频特征,KPCA则可用于提取人脸非线性特征。为此,本文〖BP)〗提出结合小波变换及KPCA的特点获取人脸特征,设计线性SVM分类器进行分类识别。由于KPCA中核函数的参数选择以及训练样本与测试样本的划分对分类识别有一定的影响,为了获得最优的识别效果,在UMIST人脸数据库上进行相应的实验。结果表明本方法可以获得较好的分类识别率,是一种快速、有效的人脸识别方法。  相似文献   

8.
粒子群优化算法(PSO)是一种进化算法,操作简单,参数少。与传统算法和遗传算法相比较,PSO算法在众多应用中表现了更好的性能。在通过对PSO算法训练支持向量机算法研究后,利用支持向量机在学习能力方面表现的良好性能,结合核主元分析特征提取方法,将其应用于人脸识别中,该方法在实验中表现了良好的识别性能,为人脸识别领域提供了一条新的识别途径。  相似文献   

9.
为了提高语音情感识别系统的识别准确率,本文在传统支持向量机(SVM)方法的基础之上,提出了一种基于PCA的多级SVM情感分类算法。首先将容易区分的情感分开,针对混淆度大且不能再利用多级分类策略直接进行区分的情感,采用主成分分析法(PCA)进行特征降维,然后逐级地判断出输入语音所属的情感类型。与传统基于SVM分类算法的语音情感识别相比,本文提出的方法可将7种情感的平均识别率提高5.05%,并且特征维度可降低58.3%,从而证明了本文所提出的方法的正确性与有效性。  相似文献   

10.
徐勇  张海  周森鑫  王辉 《微机发展》2007,17(11):118-120
人脸识别过程中,待识别人脸图像的预处理、特征选择与提取以及分类器的选择是非常重要的。利用核主成分分析方法提取的人脸图像特征信息能较好地反映人脸特征的非线性结构信息,然后将此特征数据作为支持向量机的输入数据、结合二叉树判别策略,能够实现对多类人脸图像的分类识别。实验结果表明该方法能够取得较好的识别效果。  相似文献   

11.
基于支持向量机的人脸识别技术研究   总被引:3,自引:0,他引:3  
研究人脸识别优化问题,不同程度光照对人脸图像的采集具有不利影响,使图像中包含一些噪声信息,而当前人脸识别算法没有考虑不同程度光照对人脸图像的影响,仅在光照变化不大时,识别正确率高.为了解决光照条件对人脸识别不利影响,提高脸识别正确率,提出一种多尺度Retinex( MSR)和支持向量机(SVM)相结合的人脸识别算法(MSR - SVM).MSR - SVM首先采用MSR对人脸图像进行预处理,消除光照变化的不利影响,然后采用PCA提取人脸图像特征,消除一些噪声信息,最后利用SVM分类算法对人脸图像进行分类.采用Yale人脸库对MSR - SVM算法进行仿真测试,仿真结果表明,改进方法可以消除光照变化对人脸识别不利影响,加快了人脸识别速度,提高了人脸识别正确率.  相似文献   

12.
针对人脸识别问题,提出利用PCA算法提取特征脸,采用LDA和SVM算法进行人脸分类并比较两种算法的分类结果,展示在ORL以及Yale数据库上的实验结果,提出SVM算法在人脸光照变化的数据集上的结果更好,LDA算法在人脸方位变化的数据集上的结果更好且算法复杂度更低、识别效率更高。  相似文献   

13.
基于统计学习理论的人脸识别方法研究   总被引:1,自引:1,他引:1  
徐勇  张海  周森鑫  王辉 《计算机技术与发展》2007,17(11):118-120,124
人脸识别过程中,待识别人脸图像的预处理、特征选择与提取以及分类器的选择是非常重要的。利用核主成分分析方法提取的人脸图像特征信息能较好地反映人脸特征的非线性结构信息,然后将此特征数据作为支持向量机的输入数据、结合二叉树判别策略,能够实现对多类人脸图像的分类识别。实验结果表明该方法能够取得较好的识别效果。  相似文献   

14.
采用PCA/ICA特征和SVM分类的人脸识别   总被引:16,自引:1,他引:16  
人脸识别过程中,首先在主成分分析基础上进一步做独立成分分析,来提取更加有利于分类的面部特征的主要独立成分;然后采用一种分阶段淘汰的支持向量机分类机制进行识别.该方法扩展了支持向量机处理多类问题的能力,它基于1-1差别策略,根据各判别函数VC置信范围的差异进行排序,同时利用判别函数间的冗余来降低识别误差.对两组人脸图像库的测试结果表明,文中方法在识别率和识别时间等方面都取得了较好的效果。  相似文献   

15.
为快速识别轨道不平顺中存在的短波不平顺类型,提出基于主成分分析(PCA)和支持向量机(SVM)进行轨道不平顺状态识别的方法.首先提取轴箱加速度的特征参数,并采用主成分分析法对特征参数进行降维处理,提取出轨道不平顺的主元特征;然后构建支持向量机多分类器,以不同不平顺类型下轴箱加速度数据来验证模型的准确性;最后对实测数据进行轨道不平顺识别.通过对不同轨道不平顺下轴箱加速度的分析,结果表明该方法能够有效地实现一定区段内轨道不平顺类型的识别.  相似文献   

16.
支持向量机(SVM)在处理小样本高维数据及泛化性能强等方面的优势,以及Gabor小波可以很好地模拟哺乳动物视觉神经简单细胞的感受野轮廓降低外界因素的影响,提出了基于Gabor与SVM的人脸识别方法。通过对经Gabor变换人脸图像的独立成分分析得到一组Gabor人脸独立基,并且用遗传算法求得一组最优的Gabor独立基,不但可以降低特征维数,减少计算量,而且可以提高识别率。通过对耶鲁大学人脸图像数据库的测试,证实本文算法有效性。  相似文献   

17.
提出了卷积神经网络与支持向量机结合的方法运用于遮挡人脸识别。通过卷积神经网络的卷积、下采样和Softmax的特征提取处理,由支持向量机完成后续的训练和识别。利用AR人脸库进行实验,并和传统的人脸识别方法进行比较分析,实验结果表明本文的方法有更高的识别率。  相似文献   

18.
人脸识别是模式识别的一个重要分支,主要由特征提取和分类识别两个阶段决定,由于其小样本,高维数的特点,传统的分类器容易导致过学习问题,首先使用主成分分析法对人脸图像进行降维表示,然后将最小二乘支持向量机用于识别阶段,仿真实验显示的方法取得了较好的识别效果和识别效率。  相似文献   

19.
针对人脸识别中,利用粒子群算法训练支持向量机进行分类识别时存在易陷入局部最优和收敛速度慢的问题,提出一种基于雁群优化算法的人脸识别方法。将主成分分析与独立成分分析相结合提取人脸特征,利用支持向量机进行分类,在分类识别的过程中,引入雁群优化算法以提高速度和效率。实验结果表明,与标准粒子群算法相比,改进的粒子群算法提高了人脸识别率,具有较快的识别速度。  相似文献   

20.
ICA(Independent Component Analysis)方法使用数据的高阶统计信息抽取数据的独立分量特征.但由于人脸面部表情各异,使得这种方法并不稳定.因此提出一种基于局部人脸的ICA方法.首先对人脸进行局部分块,然后对各块进行ICA特征提出并各块合理权重,最后使用SVM(Support Vector Machine)方法对其进行分类.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号