首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Copper (Cu)-doped ZnO thin films were grown on unheated glass substrates at various doping concentrations of Cu (0, 5.1, 6.2 and 7.5 at%) by simultaneous RF and DC magnetron sputtering technique. The influence of Cu atomic concentration on structural, electrical and optical properties of ZnO films was discussed in detail. Elemental composition from EDAX analysis confirmed the presence of Cu as a doping material in ZnO host lattice. XRD patterns show that the films were polycrystalline in nature with (002) as a predominant reflection of ZnO exhibited hexagonal wurtzite structure toward c-axis. From AFM analysis, films displayed needle-like shaped grains throughout the substrate surface. The electrical resistivity was found to be increased with increase of Cu content from 0 to 7.5 at%. Films have shown an average optical transmittance about 80% in the visible region and decreased optical band gap values from 3.2 to 3.01 eV with increasing of Cu doping content from 0 to 7.5 at% respectively. Furthermore, remarkably enhanced photoluminescence (PL) properties have been observed with prominent violet emission band corresponding to 3.06 eV (405 nm) in the visible region through the increase of Cu doping content in ZnO host lattice.  相似文献   

2.
Undoped and cobalt-doped zinc oxide (CZO) polycrystalline piezoelectric thin films (Co: 3, 5 at.%) using a series of high quality ceramic targets have been deposited at 450 °C onto glass substrates using a pulsed laser deposition method. The used source was a KrF excimer laser (248 nm, 25 ns, 2 J∕cm2). X-ray diffraction patterns showed that the Co-doped ZnO films crystallize in a hexagonal wurtzite type structure with a strong (0 orientation, and the grain sizes calculated from these patterns decrease from 37 to 31 nm by increasing Co doping. The optical waveguiding properties of the films were characterized by using a prism-coupling method. The distinct M-lines of the guided transverse magnetic (TM) and transverse electric (TE) modes of the ZnO films waveguide have been observed. With the aim of study the optical properties of the ZnO films, an accurate refractive index and thickness measurement apparatus was set up, which is called M-lines device. An evaluation of experimental uncertainty and calculation of the precision of the refractive index and thickness were developed on ZnO films. The optical transmittance spectra showed a good transparency in the visible region. Calculated optical band gap varying from 3.23 to 3.37 eV when the content of Co doping increases from 0 to 5 at.%.  相似文献   

3.
We investigated the effects of thickness on the electrical, optical, structural and morphological properties of B and Ga co-doped ZnO (BGZO) films grown by radio frequency (RF) magnetron sputtering. All the prepared BGZO films showed preferentially c-axis orientation and structure of hexagonal wurtzite. The results also indicated that with an increase in film thickness, the crystallite sizes of the films were increased and the optical band gap (Eg) was decreased. Below a critical thickness of about 210 nm, the thickness of the BGZO films significantly affected the electrical properties of the films. The average transmittance for all the grown films did not change obviously with the thickness.  相似文献   

4.
The growth of wurtzite ZnTe thin films with thickness between 250 and 1000 nm on borosilicate glass substrates by electron beam evaporation is reported. The formation of the wurtzite structure was confirmed using X-ray diffraction. The films showed diffraction peaks originating from the (110), (016) and (116) planes, indicating absence of any preferred orientation. The transmission of all the films was of the order of 80% in the near IR region. The refractive index of the wurtzite ZnTe phase increased with increase in thickness from 3.0 at 250 nm to 4.2 for the 1000 nm thickness film at a wavelength of 1800 nm. The optical band gap of these films increased with thickness showing values of 0.85, 0.9 and 0.98 eV at 250, 400 and 1000 nm thickness, respectively. Chemical composition studies revealed that the films were mildly non-stoichiometric with excess Te. Comparison with the zinc blende structure of ZnTe shows that the wurtzite structure has a higher refractive index, lower band gap and lower charge carrier concentration.  相似文献   

5.
Aluminum oxide-doped zinc oxide (ZnO:Al2O3) transparent thin films were deposited by DC magnetron sputtering on glass substrates; film thickness can be correlated with deposition time. The effect of ZnO:Al2O3 film thickness on electrical properties, ultraviolet (UV) transmission, surface morphology and structure, solvent resistance, and scratch hardness was investigated. The surface roughness and crystallite size of deposited films increased from 0.75 to 2.22 nm and from 14 to 57 nm, respectively, as the film thickness was increased from 18 to 112 nm. In contrast, the percent UV transmission (% T) of ZnO:Al2O3 deposited glass plates at a wavelength of 365 nm increased when the film thickness was decreased. The electrical properties of nano-film deposited glass plates such as electrical resistance, tribo-charge voltage, and decay time were in the range of electrostatic discharge (ESD) specifications. The ZnO:Al2O3 nano-film deposited glass substrate possessed good acetone and iso-propanol resistance as well as high scratch hardness. This work opens up the possibility of using the ZnO:Al2O3 transparent ultra-thin film on glass substrate in ESD applications based on their excellent properties in terms of the relatively thin and adjustable ZnO:Al2O3 film thickness needed.  相似文献   

6.
Hybrid light emitting diodes (HyLED) with a structure of FTO/ZnO/F8BT/MoO3/Au/Ag is fabricated and the influence of surface roughness of cathode (FTO/ZnO) is investigated. The roughness of FTO could be decreased from 9.2 nm to 2.2 nm using a mild polishing process. The ZnO film, deposited by spray pyrolysis, functions as an electron injection layer. The roughness of the FTO/ZnO surface is found also highly dependent on the ZnO thickness. For thin ZnO films (20 nm), polishing results in better efficacy and power efficiency of LED devices, with nearly a two times improvement. For thick ZnO films (210 nm), the overall FTO/ZnO roughness is almost independent of the FTO roughness, hence both polished and unpolished substrates exhibit identical performance. Increasing ZnO thickness generally improves the electron injection condition, leading to lower turn on voltage and higher current and power efficiencies. However, for too large ZnO thickness (210 nm) the ohmic loss across the film dominates and deteriorates the performance. While the polished substrates show less device sensitivity to ZnO thickness and better performance at thin ZnO layer, best performance is obtained for unpolished substrates with 110 nm ZnO thickness. Larger interface area of ZnO/F8BT and enhanced electric filed at sharp peaks/valleys could be the reason for better performance of devices with unpolished substrates.  相似文献   

7.
Zinc oxide (ZnO) thin films were deposited on sapphire substrates at room temperature by radio frequency (RF) magnetron sputtering. These films were irradiated with 100 MeV O7+ ions of the fluencies 5×1013 ions/cm2 at room temperature (RT) and at liquid nitrogen temperature (LNT). Profilometer studies showed that the roughness of pristine and LNT irradiated ZnO thin films were higher than that of the RT irradiated ZnO thin film. The glancing angle X-ray diffraction analysis reveals a reduced intensity and increased full width at half maximum (FWHM) of the (002) diffraction peak in the case of LNT irradiated film indicating disorder. However, the intensity and FWHM of the (002) diffraction peak in the case of RT irradiated ZnO thin films are comparable to those of the pristine film. UV–visible transmission spectra show that the percentage of transmission and band gap energy are different for RT and LNT irradiated films. While the pristine ZnO thin film exhibits two emissions—a broad emission at 403 nm and a sharp emission at 472 nm in its photoluminescence spectrum; the emission at 472 nm was absent for the irradiated films. The atomic concentrations of zinc and oxygen during the irradiation process were obtained using auger electron spectroscopy.  相似文献   

8.
Cu-doped zinc oxide (ZnO:Cu) films were deposited on p-Si (100) substrates using radio-frequency reactive magnetron sputtering. The structure and optical properties of the films were characterized by X-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and fluorescence spectroscopy. XRD and SEM results revealed that ZnO:Cu film had a better preferential orientation along the c-axis compared with pure ZnO film. The chemical state of copper and oxygen in ZnO:Cu films was investigated by XPS. The results suggest that the Cu ion has a mixed univalent and bivalent state. The integrated Cu2+/Cu+ intensity ratio increased with the O2 partial pressure. Photoluminescence measurements at room temperature revealed a double peak in the blue regions and a green emission peak. The close relationship between the valence state of Cu ions and the blue–green emission is discussed in detail. A higher photocurrent was observed for ZnO:Cu films under UV illumination. UV photodetectors based on ZnO:Cu films have high sensitivity and fast response and recovery times. Under periodic UV illumination at 380 nm the ZnO:Cu films showed stable photocurrent growth and decay, so the films are potential candidate materials for UV photodetectors.  相似文献   

9.
Zinc Oxide (ZnO) thin films have been electrochemically deposited on fluorine doped tin oxide (FTO) coated glass substrates from an aqueous electrolyte. Deposition potential −0.96 V was optimized by cyclic voltammetry experiment for slow scan rate 5 mV/s with moderate agitation of electrolyte. The effect of pH on the electrodeposition of ZnO is studied by cyclic voltammetry, X-ray diffraction (XRD), scanning electron microscopy (SEM), optical spectroscopy and photoelectrochemical I-t transient characteristics. It is revealed that the pH of the electrolyte has significant influence on the surface morphology and structural properties. Highly crystalline ZnO layers with hexagonal crystal structure deposited for all pH of the solutions. A systematic shift observed in the reflections (002) and (101) is correlated with an effective tensile strain developed in the crystal lattice. A remarkable improvement in the crystallinity was noticed in the as-deposited ZnO samples with increasing pH and upon heat treatment. Optical direct band gap ~ 3.26–3.33 eV and transmittance ~70 −80% was measured by optical spectroscopy. PL measurement showed the band edge emission at 375–382 nm and a visible light emission at 410–550 nm. The intensities of emission peaks are found to be affected by the pH of bath. The compact, densely packed and well adherent thin films of ZnO electrodeposited in zinc nitrate bath for pH 2.0, 3.5 and 6.0. The surface morphology has been changed from granular to disc shaped and finally a large hexagonal sheets were obtained with an increase in the pH of bath. Nearly stoichiometric ZnO thin films are electrodeposited at −0.96 V versus Ag/AgCl reference electrode for pH 6.0. The photoelectrochemical (PEC) measurement (I-t transient curve) shows the enhancement in photocurrent with increasing the pH of zinc nitrate solution. After heat treatment the photocurrent is increased by 54%, 98% and 130% in the samples deposited from 2.0, 3.5 and 6.0 pH of the bath. I-V measurements were further confirmed the current enhancement in all samples after heat treatment.  相似文献   

10.
CuCr0.93Mg0.07O2 thin films were successfully deposited by DC reactive magnetron sputtering at 1123 K from metallic targets. The influence of film thickness on the structural and optoelectronic properties of the films was investigated. X-ray diffraction (XRD) results revealed that all the films had a delafossite structure with no other phases. The optical and electrical properties were investigated by UV–VIS spectrophotometer and Hall measurement, respectively. It was found that the optoelectronic properties exhibited a thickness-dependent behavior. The optical band gap and the average transmittance of the films showed a monotonous decrease with respect to the increase in thickness. The average transmittance in the visible region decreased from 67% to 47% as the thickness increased from ~70 nm to ~280 nm. Simultaneously, the conductivity of the films fell from 1.40 S∙cm−1 to 0.27 S∙cm−1. According to Haacke's figure of merit (FOM), a film with a maximum FOM value of about 1.72×10−7 Ω−1 can be achieved when the thickness is about 70 nm (σ≈ 1.40 S·cm−1 and Tav. ≈67%).  相似文献   

11.
Indium-doped zinc oxide (ZnO) nanoparticle thin films were deposited on cleaned glass substrates by spray pyrolysis technique using zinc acetate dihydrate [Zn(CH3COO)2 2H2O] as a host precursor and indium chloride (InCl3) as a dopant precursor. X-ray diffraction results show that all films are polycrystalline zinc oxide having hexagonal wurtzite structure. Upon In doping, the films exhibit reduced crystallinity as compared with the undoped film. The optical studies reveal that the samples have an optical band gap in the range 3.23–3.27 eV. Unlike the undoped film, the In-doped films have been found to have the normal dispersion for the wavelength range 450–550 nm. Among all the films investigated, the 1 at% In-doped film shows the maximum response 96.8% to 100 ppm of acetone in air at the operating temperature of 300 °C. Even at a lower concentration of 25 ppm, the response to acetone in this film has been found to be more than 90% at 300 °C, which is attributed to the smaller crystallite size of the film, leading to sufficient adsorption of the atmospheric oxygen on the film surface at the operating temperature of 300 °C. Furthermore, In-doped films show the faster response and recovery at higher operating temperatures. A possible reaction mechanism of acetone sensing has been explained.  相似文献   

12.
We present low cost hydrothermally deposited uniform zinc oxide (ZnO) nanorods with high haze ratios for the a-Si thin film solar cells. The problem of low transmittance and conductivity of hydrothermally deposited ZnO nanorods was overcome by using RF magnetron sputtered aluminum doped zinc oxide (ZnO:Al ~300 nm) films as a seed layer. The length and diameters of the ZnO nanorods were controlled by varying growth times from 1 to 4 h. The length of the ZnO nanorods was varied from 1 to 1.5 µm, while the diameter was kept larger than 300 nm to obtain various aspect ratios. The uniform ZnO nanorods showed higher transmittance (~89.07%) and haze ratio in the visible wavelength region. We also observed that the large diameters (>300 nm) and average aspect ratio (3–4) of ZnO nanorods favored the light scattering in the longer wavelength region. Therefore, we proposed uniformly deposited ZnO nanorods with high haze ratio for the future low cost and large area amorphous silicon thin film solar cells.  相似文献   

13.
Copper (Cu) doped zinc oxide (ZnO) thin films were successfully prepared by a simple sol-gel spin coating technique. The effect of Cu doping on the structural, morphology, compositional, microstructural, optical, electrical and H2S gas sensing properties of the films were investigated by using XRD, FESEM, EDS, FTIR, XPS, Raman, HRTEM, and UV–vis techniques. XRD analysis shows that the films are nanocrystalline zinc oxide with the hexagonal wurtzite structure and FESEM result shows a porous structured morphology. The gas response of Cu-doped ZnO thin films was measured by the variation in the electrical resistance of the film, in the absence and presence of H2S gas. The gas response in relation to operating temperature, Cu doping concentration, and the H2S gas concentration has been systematically investigated. The maximum H2S gas response was achieved for 3 at% Cu-doped ZnO thin film for 50 ppm gas concentration, at 250 °C operating temperature.  相似文献   

14.
Highly transparent ZnO films were deposited on glass substrates using zinc acetate solution through cost effective spray pyrolysis method. A comprehensive study was carried out to understand the effects of deposition temperature and precursor concentrations on structure, surface morphology, optical, electrical and magnetic properties of the deposited films. All deposited films were polycrystalline in nature with hexagonal wurtzite structure. The films were preferentially oriented along (1 0 1) plane up to 723 K beyond which orientation changed to (0 0 2) plane. Irrespective of precursor concentration used, the films deposited at 673 K and 723 K showed fibrous structure. The films deposited at higher temperature led to enhanced transmittance and optical energy band gap. With higher precursor concentrations the transmittance decreased while the band gap increased. Photoluminescence studies revealed the presence of various defects leading to emission in the visible region apart from band to band transition near UV region. Lowest electrical resistivity was obtained for films deposited at 723 K which is of the order 102 Ω cm. At room temperature, all deposited films were diamagnetic while they were paramagnetic at 5 K.  相似文献   

15.
In this study, undoped and Ga doped ZnO thin films were synthesized by the sol–gel spin coating technique. The effect of Ga contribution on the structural, morphological and optical properties of the ZnO thin films was examined. XRD results showed that all films had a hexagonal wurtzite crystal structure with polycrystalline nature. The intensity of the (002) peak changed with the variable Ga content. The scanning electron microscopy (SEM) results revealed that the surface morphology of the ZnO thin films was affected by Ga content. Moreover, it consisted of nanorods as a result of the increased function of the Ga content. Additionally, the presence of Ga contributions was evaluated by energy dispersive x-ray (EDX) measurements. Although the transparency and the optical band gap of the ZnO thin films increased with Ga contribution, Urbach energy values decreased from 221 meV to 98 meV. In addition, these steepness parameters increased with the increased Ga content from 0% to 6%. The correlation between structural and optical properties was investigated and significant consistency was found.  相似文献   

16.
In this report, sputtered-grown undoped ZnO and Y-doped ZnO (ZnO:Y) thin film transistors (TFTs) are presented. Both undoped ZnO and ZnO:Y thin films exhibited highly preferred c-axis oriented (002) diffraction peaks. The ZnO:Y thin film crystallinity was improved with an increase of (002) peak intensity and grain size. The electrical properties of ZnO:Y TFTs were significantly enhanced relative to undoped ZnO TFTs. ZnO:Y TFTs exhibited excellent performance with high mobility of 38.79 cm2 V−1 s−1, small subthreshold swing of 0.15 V/decade, and high Ion/Ioff current ratio of the order of 8.17 × 107. The O1s X-ray photoelectron spectra (XPS) showed oxygen vacancy-related defects present in the ZnO:Y TFTs, which contributed to enhancing the mobility of the TFTs.  相似文献   

17.
Transparent conductive ZnO films were directly deposited on unseeded polyethersulfone (PES) substrates with a spin-spray method using aqueous solution at a low substrate temperature of 85 °C. All ZnO films were crystalline with wurtzite hexagonal structure and impurity phases were not detected. ZnO films deposited without citrate ions in the reaction solution had a rod array structure. In contrast, ZnO films deposited with citrate ions in the reaction solution had a continuous, dense structure. The transmittance of the ZnO films was improved from 11.9% to 85.3% as their structure changed from rod-like to continuous. After UV irradiation, the ZnO films with a continuous, dense structure had a low resistivity of 9.1×10−3 Ω cm, high carrier concentration of 2.7×1020 cm−3 and mobility of 2.5 cm2 V−1 s−1.  相似文献   

18.
Zinc oxide (ZnO) thin films were deposited by nebulizer spray pyrolysis technique with different molar concentrations of 0.05 M, 0.10 M and 0.15 M. The films were characterized by structural, morphological, electrical and optical properties. X-ray diffraction confirms that the all films are polycrystalline in nature with hexagonal crystal structure having preferential orientation along (002) plane and the maximum crystallite size is found to be ~77 nm. The band gap energy increases with molar concentration and reaches a maximum value of 3.2 eV at 0.15 M. Room temperature photoluminescence measurements were performed and band to band emission energies of ZnO films were determined. High resolution scanning electron microscopy shows the uniform distribution, densely packed grains with a plate like structure of ~55 nm (0.05 M).  相似文献   

19.
Nanocrystalline ZnO was synthesized from zinc (II) acetate/oxalate mixture using a facile sol–gel synthesis and is characterized by techniques such as powder XRD, FTIR and Raman spectroscopy, TEM and SEM. The TEM and SEM study showed that the nanocrystalline ZnO powder and film have an average particle size of 25 nm. This material has been successfully applied as photoanodes in dye sensitized solar cells (DSCs) constructed with standard N719 dye and conventional iodide/triiodide (I/I3) electrolytes. A systematic investigation of the performance of DSCs with film thickness and dyeing time had also been carried out. Among the five different film thicknesses 4, 8, 12, 16 and 20 μm prepared, the best result was obtained for the film thickness of 16 μm for 2 h dying showing an efficiency of 2.2% with a JSC of 4.7 mA cm−2 and a very high fill factor of >73%.  相似文献   

20.
The effect of oxygen concentration on the properties of Al-doped ZnO (AZO) transparent conductive films has been investigated on the films deposited by pulsed DC magnetron sputtering using a cylindrical ZnO target containing 2 wt% Al. AZO films were deposited at 230 °C to the thickness of about 1000 nm and the oxygen concentration was controlled by varying the O2/Ar supply ratio from 0 to 0.167. With the increasing O2/Ar ratio, crystallinity of the AZO films deteriorated while the film surface became smooth. Accompanying this, electrical properties also deteriorated significantly. When the O2/Ar ratios were 0 and 0.033, the AZO films showed metallic conduction behavior with the electrical resistivity in the mid 10?4 Ω cm range. However, when the ratios were 0.100 and 0.167, the films showed poor electrical conduction behavior similar to semiconductors as deduced from the transmittance behavior. Spectroscopic analysis showed that such deteriorating properties are due to the formation of condensed oxide group through the reaction between excess oxygen and dopant aluminum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号