首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ag3PO4/BiOI composites were successfully prepared by a facial room temperature liquid phase method. Ag3PO4 nanoparticles were uniformly distributed on the surface of BiOI nanosheets. The photodegradation tests show that the photocatalytic efficiency was increased at first and then decreased when further increasing Ag3PO4 content in the composites. The best photocatalytic performance was obtained for the sample with Ag/Bi ratio of 0.3 and the photodegradation efficiency of Ag3PO4/BiOI was nearly 10 times that of BiOI. The enhanced photocatalytic activity of the composites was due to the improved photogenerated carrier separation capacity, being induced by the coupling effects of the two semiconductors.  相似文献   

2.
In an attempt to develop nanostructured photocatalysts with high performance, SrTiO3/Ag3PO4 hetero-nanostructures were successfully fabricated. The formed binary heterojunctions were composed of SrTiO3 nanotubes prepared using liquid-phase deposition, and Ag3PO4 nanoparticles prepared using a sol–gel method. Synthesis details, including morphology, structure, and optical properties of the prepared photocatalysts, were characterized and comparatively discussed. The results showed that at an optimal ratio of SrTiO3 to Ag3PO4 (20–80), the photocatalytic degradation of Basic Blue 41 under 80-min visible light irradiation is the maximum amount of 99%, which is about 4.4 and 1.5 times higher than that of pristine SrTiO3 nanorods and Ag3PO4 nanoparticles, respectively. It can be due to the synergistic effect of two materials that provide high light absorption and charge carriers’ separation. Finally, a detailed possible mechanism for enhancing the photocatalytic activity of the SrTiO3/Ag3PO4 hetero-nanostructures was proposed.  相似文献   

3.
The BiOCl/Ag3PO4 composites have been prepared via a facile and reproducible route. In the composite, Ag3PO4 particles are deposited on the surface of plates of BiOCl. Among the as‐prepared samples, the ultraviolet (UV) and visible light photocatalytic reaction rates of BiOCl/Ag3PO4 composite with the ratio of 1:0.1 are about 4.4 times and 4.5 times than that of pure BiOCl, respectively. Overall, the BiOCl/Ag3PO4 composites not only show highly enhanced visible light photocatalytic activity but also exhibit highly improved UV photocatalytic activity, which could find enormous potential application in addressing environmental protection issues utilizing solar energy effectively.  相似文献   

4.
《Ceramics International》2015,41(7):8956-8963
The Ag3PO4/CeO2 heterojunction photocatalyst prepared by an ultrasound-assisted method exhibits an enhanced photocatalytic activity compared to pure Ag3PO4, CeO2, and Ag3PO4/CeO2 obtained without ultrasound action. The samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and ultraviolet–visible absorption spectroscopy (UV–vis), and the effects of ultrasound on the physicochemical properties and photocatalytic activity of Ag3PO4/CeO2 are discussed. Results show that the ultrasound-assisted synthesis method significantly improves the photocatalytic ability. The mechanism about the improvement was discussed in details.  相似文献   

5.
Ag3PO4 was synthesized with the assistance of N, N-dimethylformamid (DMF) and urea for high performance photocatalysis. The photocatalytic activity of the as-synthesized samples was evaluated by photodegrading rhodamine B (Rh B) under visible light irradiation. As a result, the optimal Ag3PO4 synthesized with the assistance of DMF and urea exhibited enhanced photocatalytic activity for Rh B degradation under visible light irradiation. DMF and urea play vital roles in improving the photocatalytic activity of Ag3PO4. This study could provide a new perspective for the controllable synthesis of Ag3PO4.  相似文献   

6.
Leaf-like InVO4/BiVO4 nanoarchitectures with scale of 2 μm–5 μm were prepared by a facile hydrothermal method. Ag3PO4 quantum dots (QDs) were then deposited onto the surface of leaf-like InVO4/BiVO4 crystals via a simple deposition–precipitation technique. The photocatalytic tests displayed that the Ag3PO4/InVO4/BiVO4 nanocomposite possesses a much higher rate for degradation of rhodamine B (Rh B) than the sum of BiVO4, InVO4, Ag3PO4, Ag3PO4/InVO4, Ag3PO4/BiVO4 or InVO4/BiVO4 under visible light irradiation. The observed improvement in photocatalytic performance is associated with the extended absorption in the visible light region resulting from the Ag3PO4 QD loading, the high specific surface area, and the effective separation of photogenerated carriers at the Ag3PO4/InVO4/BiVO4 interfaces.  相似文献   

7.
《Ceramics International》2017,43(15):11588-11595
Ag3PO4/TiO2 nanosheet (TNS) heterojunction photocatalysts with almost 100% exposed (001) facets were fabricated via a facile in situ growth process. The Ag3PO4/TNS exhibited remarkable photocatalytic activity for the degradation of rhodamine B (RhB) and it was significantly more recyclable under sunlight compared with Ag3PO4. The RhB degradation efficiency was 99.11% after 50 min of sunlight irradiation, and was 85.8% after three cycles. The photocatalytic degradation mechanism of RhB over the Ag3PO4/TNS heterojunctions is driven by both photogenerated holes (h+) and ·O2 radicals. This efficient and reusable Ag3PO4/TNS heterojunction photocatalyst is not only suitable for fundamental research but also has potential for practical applications in the energy and environmental fields. This study demonstrates that applying morphology engineering to heterojunctions is useful for developing composite photocatalysts with greatly improved properties.  相似文献   

8.
We find the stabilization effect of surface capping on the adsorption capacity and photocatalytic activity of Ag3PO4 in the recycling. The citrate anion complex (CAC) as the surface capping is confirmed to be constituted by citrate anion and silver citrate complex. The adsorption capacity of Ag3PO4 with CAC capping exhibits little increase in the subsequent cycle, whereas the one of the bare Ag3PO4 decreases by 25.8% for methylene blue (MB). The photocatalytic activity of Ag3PO4 with CAC capping is maintained, compared to marked 10% decrease of bare Ag3PO4 for degrading MB.  相似文献   

9.
《Ceramics International》2022,48(2):2169-2176
Heterojunction engineering is considered as a hopeful approach to ameliorate the separation of photogenerated carriers of photocatalysts, realizing efficient water-splitting performance. In this study, an organic-inorganic S-scheme of a one-dimensional g-C3N4 nanotube (TCN)/Ag3PO4 photocatalytic system with high photocatalytic water oxidation activity was designed by coupling g-C3N4 nanotubes over Ag3PO4 particles through a chemical coprecipitation method. The TCN/Ag3PO4 heterojunction demonstrated excellent photocatalytic O2 production with an O2 evolution rate of up to 370.2 μmol·L?1·h?1. X-ray photoelectron spectroscopy analysis showed that electron migration between TCN and Ag3PO4 led to the formation of an internal electric field pointing from TCN to Ag3PO4, which drove the S-scheme charge transfer mode between TCN and Ag3PO4. Accordingly, the TCN/Ag3PO4 heterojunction possessed fast charge separation and high redox ability, leading to high photoactivity and photostability. This research provides a new strategy for fabricating highly efficient inorganic-organic S-scheme photocatalysts for O2 production.  相似文献   

10.
《Ceramics International》2020,46(1):106-113
To develop a novel photocatalyst with high catalytic performance under sunlight, AgSCN/Ag3PO4/C3N4 heterojunction photocatalyst with Z-mechanism has been prepared, which demonstrates excellent photocatalytic performance for ibuprofen degradation. The catalytic activity of AgSCN/Ag3PO4/C3N4 is 1.5 and 3.3 times that of AgSCN/Ag3PO4 and Ag3PO4, respectively. The cyclic degradation number of AgSCN/Ag3PO4/C3N4 increases to seven because of the protection of AgSCN and C3N4 to Ag3PO4. The excellent photocatalytic performance of the AgSCN/Ag3PO4/C3N4 is attributed from the Z-mechanism with efficient separation efficiency of electron hole pair.  相似文献   

11.
The Ag3PO4/Bi2WO6 hierarchical heterostructures were prepared by a combination of hydrothermal technique and in situ precipitation method for the first time. The Ag3PO4/Bi2WO6 hierarchical heterostructures displayed enhanced visible-light photocatalytic activity against phenol. The enhanced photocatalytic activity could be attributed to the effective separation of photogenerated carriers driven by the photoinduced potential difference generated at the Ag3PO4/Bi2WO6 heterojunction interface. Repetitive tests showed that the Ag3PO4/Bi2WO6 hierarchical heterostructures maintained high catalytic activity over several cycles, and it had a better regeneration capability under mild conditions.  相似文献   

12.
A highly efficient and stable photocatalyst Ag/Ag3PO4 was prepared by the ion-exchange process between AgNO3 and Na2HPO4 and subsequently light-induced reduction route. The diffuse reflectance spectra (DRS) indicated Ag/Ag3PO4 had strong absorption in UV and visible-light regions. The composite showed excellent visible-light-driven photocatalytic performance. It can decompose organic dye within several minutes and still maintain a high level activity even though used five times. It is considered that this excellent performance results from the surface plasmon resonance of Ag nanoparticles and a large negative charge of PO43  ions.  相似文献   

13.
In this work, a ternary composite photocatalyst of graphitic carbon nitride (g-C3N4), graphene oxide (GO), and Ag3PO4 was prepared through a simple precipitation route, in which Ag3PO4 nanoparticles covered or wrapped with GO sheets are supported on g-C3N4 sheets. The composite photocatalyst displays enhanced absorption in the visible region, and exhibited superior photocatalytic activity compared with single-component or binary composite photocatalysts in the photocatalytic decomposition of Rhodamine B. The enhancement of photocatalytic activity could be attributed to the synergistic effect among them. The ternary composite also exhibited enhanced stability, but further efforts should be made to make it more stable.  相似文献   

14.
The Ag3PO4 porous microtubes are, for the first time, prepared by a one-pot synthesis using polyethylene glycol 200 (PEG200) as the reaction medium. This study establishes that PEG 200 plays a vital role in the formation of the unique structures. Under visible light irradiation (≥ 420 nm), the porous sample exhibits a higher photocatalytic activity for the degradation of RhB than solid Ag3PO4 and Ag3PO4 tetrapods, which has been mainly ascribed to the novel hollow structure.  相似文献   

15.
《Ceramics International》2022,48(15):21898-21905
Recently, there has been a significant interest in developing high-performance photocatalysts for removing organic pollutants from water environment. Herein, a ternary graphitic C3N4 (g-C3N4)/Ag3PO4/AgBr composite photocatalyst is synthesized using an in-situ precipitation-anion-exchange process and characterized by several spectroscopic and microscopic techniques. During the photocatalytic reaction, X-ray photoelectron spectroscopy clearly illustrated the formation of metallic Ag on the g-C3N4/Ag3PO4/AgBr composite surface. The ternary composite photocatalyst demonstrated an increased photoactivity under visible light (>420 nm), achieving a complete decolorization of methyl orange (MO) in 5 min. The ternary g-C3N4/Ag3PO4/AgBr hybrid was also applied to the 2-chlorophenol degradation under visible light, further confirming its excellent photocatalytic activity. In addition, quenching experiments revealed that holes (h+) and O2?– were the major attack species in the decolorization of MO. The enhanced photoactivity of g-C3N4/Ag3PO4/AgBr results from the efficient transfer/separation of photoinduced charges with the dual Z-scheme pathway and the charge recombination sites on the formed Ag particles.  相似文献   

16.
Ag3PO4 catalysts exhibited excellent photocatalytic performance in the degradation and the mineralization of bisphenol A, displaying considerably higher photocatalytic activity than N–TiO2 under visible light (λ > 420 nm). The trapping effects of different scavengers and spectrophotometric results proved that the oxidation of bisphenol A mainly occurred at photogenerated holes on the Ag3PO4 surface, along with a two-electron reduction of dissolved oxygen to H2O2.  相似文献   

17.
The 1D Ag3PO4 sensitized SrTiO3 nanowires are prepared by simple route of electrospinning-in situ deposition technique. The results of the thermogravimetry (TG), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive Spectrometer (EDS), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and UV–Visible diffuse reflectance spectroscopy (UV–Vis) indicate that the Ag3PO4 nanoparticles has been deposited on the surface of the SrTiO3 nanowires successfully. Experimental results showed that compared with pure SrTiO3, the as-prepared 1D Ag3PO4 sensitized SrTiO3 nanowires exhibit obvious enhancement of photocatalytic performance and stability. Especially, the Ag3PO4/SrTiO3 (3AS sample) had a satisfactory photocatalytic activity for degrading methylene blue (MB) more than 98% under visible light irradiation. As to pure SrTiO3 and Ag3PO4, only 9.8% and 49% of MB was decomposed after 35?min irradiation respectively. Furthermore, the mechanism of the enhancing photocatalytic activity could be ascribed to the nano-heterojunction of the Ag3PO4/SrTiO3, the visible light response of the Ag3PO4, and the 1D structure of the nanowires.  相似文献   

18.
《Ceramics International》2017,43(4):3706-3712
Silver phosphate is a promising photocatalyst since its energy band gap is situated in the visible range (Eg≈2.4 eV), thus this material is a potential candidate for replacing titania which is photoactive only under UV. However, Ag3PO4 suffers of photocorrosion and therefore composites should be prepared to limit this detrimental effect. In this work, pure Ag3PO4 and its composites with AgI, TiO2, and hydroxyapatite were prepared by using various methods. The photoactivity of the materials was evaluated by their ability to decolorize methylene blue and to mineralize phenol under non-filtered and UV-filtered artificial solar-like radiation. The use of UV cut-off filter enhanced the photocatalytic activity of pure silver phosphate by limiting the photocorrosion of silver(I) into Ag°. For composites with AgI and TiO2, despite their lower photoactivity compared to pure Ag3PO4, the efficiency in mineralization of phenol after repeated run is stabilized by using UV cut-off filter. On the other hand, the photocatalytic efficiency of Ag3PO4 composites containing hydroxyapatite remained low mainly due to high absorption properties of hydroxyapatite. The photoactive samples showed excellent photoinduced antimicrobial properties where Gram-negative E. coli was more susceptible to photocatalytic deactivation than Gram-positive S. aureus (MRSA).  相似文献   

19.
Saddle-like Ag3PO4 particles of tetrahedron structure were successfully synthesized using a co-precipitation method by mixing H3PO4 ethanol solution and AgNO3 ethanol aqueous solution, where the percentage of ethanol in AgNO3 ethanol aqueous solution was varied at 0, 50, 80, 90 and 100% (v/v). The photocatalytic performance of the synthesized samples was evaluated by photodegradation of Rhodamine B (RhB) under blue light irradiation (λ = 455 nm). The results showed that the morphology of the Ag3PO4 particles greatly changed depending on the ethanol content in the reaction solution. Excellent photocatalytic activity was observed at 80% (v/v) of ethanol, where the Ag3PO4 showed saddle-like morphology derived from the tetrahedron structure.  相似文献   

20.
A simple, environment-friendly and easily operating strategy, inositol hexaphosphoric sodium assisted soft template method, has been developed for synthesis of uniform Ag3PO4 nanocrystals (NCs) with controlled size in the range of 40 to 50 nm. The Ag3PO4 NCs exhibit superior photocatalytic activity compared with micron-sized Ag3PO4 particles under visible light. This approach is a general method and can be extended to the synthesis of a variety of other silver salts NCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号