首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Multiwalled carbon nanotubes (MWNTs) were solubilized in water by wrapping them noncovalently with poly(4-styrene sulfonate) (PSS). The PSS-wrapped MWNTs exhibited a high conductivity (2.0 × 102 S/cm) when compared to other solution-processed electrodes. Ultraviolet photoelectron spectroscopy results show the PSS-wrapped nanotubes have a work function of 4.83 eV, which is 0.36 eV higher than that of untreated MWNTs. We fabricated triisopropylsilylethynyl pentacene field-effect transistors (FETs) using the PSS-wrapped MWNTs as source/drain electrodes and found that the field-effect mobility of the thus obtained devices was 0.043 cm2 V?1 s?2. This mobility is four times higher than that of similar FETs containing gold electrodes (0.011 cm2 V?1 s?2).  相似文献   

2.
We report on organic field-effect transistors (OFETs) with sub-micrometer channels fabricated on plastic substrates with fully direct-written electrical contacts. In order to pattern source and drain electrodes with high resolution and reliability, we adopted a combination of two digital, direct writing techniques: ink-jet printing and femtosecond laser ablation. First silver lines are deposited by inkjet printing and sintered at low temperature and then sub-micrometer channels are produced by highly selective femtosecond laser ablation, strongly improving the lateral patterning resolution achievable with inkjet printing only. These direct-written electrodes are adopted in top gate OFETs, based on high-mobility holes and electrons transporting semiconductors, with field-effect mobilities up to 0.2 cm2/V s. Arrays of tens of devices have been fabricated with high process yield and good uniformity, demonstrating the robustness of the proposed direct-writing approach for the patterning of downscaled electrodes for high performance OFETs, compatibly with cost-effective manufacturing of large-area circuits.  相似文献   

3.
Light-emitting field-effect transistors with a liquid crystalline polymer of poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-bithiophene] (F8T2) were investigated under alternating current (AC) gate operations. Bottom-contact/top-gate devices were fabricated with indium-tin-oxide (ITO) source/drain electrodes, a poly(methyl methacrylate) dielectric and a gold gate electrode. The crystalline F8T2 film exhibited ambipolar characteristics with electron and hole mobilities of 1.8 × 10?3 and 2.5 × 10?3 cm2/V s, respectively, although the threshold voltage was considerably higher for electron injection. By applying square-wave voltages to the gate, light emission was obtained at the both edges of the source and drain electrodes by alternating injection of opposite carriers even when the source and drain were grounded. The light intensity was enhanced in the channel region by biasing the source negative while biasing the drain positive where the holes injected from the drain were transported to recombine with the electrons injected at the source edge.  相似文献   

4.
One of the most highlighted advantages of dye-sensitized solar cells (DSSCs) consists in the possibility to apply simple and low-cost printing techniques and solution processable materials for their assembling. Here, we report on screen-printed Pt–free counter electrodes (CEs) based on poly(3,4–ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) dispersions with different content of rheological agent – hydroxyethyl cellulose (HEC). These PEDOT:PSS dispersions, having measured pseudoplastic and thixotropic rheological behaviour, were screen–printed onto FTO glasses. The content of rheological agent in PEDOT:PSS catalytic layers showed an effect on measured thickness, electrochemical properties, specific conductivity and subsequently on the evaluated photovoltaic performance of DSSCs. The PEDOT:PSS CE with the 0.03 wt% of HEC achieved the best electrochemical performance and specific conductivity (80 S cm−1), the lowest thickness of 200 nm and transparency in VIS light spectrum over 60%. DSSCs based on this PEDOT:PSS CE reached the highest conversion efficiency of 4.2% which is only approximately 40% lower value than η=6.9% evaluated for Pt CE.  相似文献   

5.
C60 and picene thin film field-effect transistors (FETs) in bottom contact structure have been fabricated with poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) electrodes for a realization of mechanical flexible organic FETs. The C60 thin film FETs showed n-channel enhancement-type characteristics with the field-effect mobility μ value of 0.41 cm2 V?1 s?1, while the picene thin film FET showed p-channel enhancement-type characteristics with the μ of 0.61 cm2 V?1 s?1. The μ values recorded for C60 and picene thin film FETs are comparable to those for C60 and picene thin film FETs with Au electrodes.  相似文献   

6.
An AMOLED panel driven by an OTFT-backplane is an attractive display because OTFTs and OLEDs use organic materials with unique characteristics such as low temperature and solution processing ability, and thus are able to implement the key features of future displays. In this study we applied some printing technologies to fabricate an OTFT-backplane for AMOLEDs. Screen printing combined with photolithography with Ag ink was used for the gate electrodes and scan bus lines and contact pads. Ag metal lines with a width of 20 μm and thickness of 60 nm and resistivity of 3.0 × 10?5 Ω cm were achieved. Inkjet printing was applied to deposit TIPS-pentacene as an organic semiconductor. The OTFT-backplane using the Ag gate electrodes and TIPS-pentacene exhibited uniform performance over 17,500 pixels on a 7 in. panel. The mobility was 0.31 ± 0.05 cm2/V s with a deviation of 17%. The AMOLED panel successfully demonstrated its ability to display patterns.  相似文献   

7.
The flexible organic ferroelectric nonvolatile memory thin film transistors (OFMTs) were fabricated on polydimethylsiloxane (PDMS) elastomer substrates, in which an organic ferroelectric poly(vinylidene-trifluoroethylene) and an organic semiconducting poly(9,9-dioctylfluorene-co-bithiophene) layers were used as gate insulator and active channel, respectively. The carrier mobility, on/off ratio, and subthreshold swing of the OFMTs fabricated on PDMS showed 5 × 10−2 cm2 V−1 s−1, 7.5 × 103, and 2.5 V/decade, respectively. These obtained values did not markedly change when the substrate was bent with a radius of curvature of 0.6 cm. The memory on/off ratio was initially obtained to be 1.5 × 103 and maintained to be 20 even after a lapse of 2000 s. The fabricated OFMTs exhibited sufficiently encouraging device characteristics even on the PDMS elastomer to realize mechanically stretchable nonvolatile memory devices.  相似文献   

8.
《Organic Electronics》2014,15(8):1868-1875
Polymeric thin-film transistors (pTFTs) have been fabricated by pulsed-laser printing of semiconductor and conductor polythiophene-based derivatives. Thin solid layers of semiconducting poly(3,3′″ didodecylquaterthiophene) (PQT-12) have been transferred by a laser-induced forward transfer (LIFT) technique on Si/SiO2 receiver substrates. Optimization of the transfer conditions and of the pixels morphologies has been realized. A marked improvement in the quality of the pixels has been observed, in terms of morphology and structure, by reducing the environmental pressure to 90 mbar during LIFT. Subsequently, poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) has also been laser-printed and used as source/drain electrodes in the transistor configuration. Functional polymeric transistors have been obtained with high field-effect mobility up to 2 × 10−2 cm2 V−1 s−1 together with current modulation of 104.  相似文献   

9.
《Organic Electronics》2008,9(1):95-100
1.5 in. diagonal red, green, and blue monochrome passive-matrix (PM) polymer light-emitting diodes (PLED) flat panel displays (FPDs) with format 96 × 64 were fabricated by spin-coating technology with device structure of ITO/PEDOT/Emissive layer/Ba/Al. During spin-coating process, by rearranging the location and the direction of the panel with respect to the center of the spinner, the piling of organic materials under the cathode separator was significantly reduced, resulting in a more uniform light emission. The final display showed neither dead pixels nor dead lines. Current efficiencies of 1.37, 9.5 and 1.44 cd/A, and CIE color coordinates of (0.62, 0.37), (0.37, 0.60) and (0.15, 0.13), for red, green, and blue monochrome displays, respectively, have been achieved. Further, 1.5 in. full color PM PLED FPDs with format 96 × RGB × 64 was successfully fabricated by inkjet printing technology. The current efficiency was about 0.75 cd/A at full screen white with color coordinates located at (0.34, 0.35). A color gamut of 50% NTSC was obtained. For all the displays, the 5-point uniformity was more than 80%.  相似文献   

10.
The originality of this work consists in printing on ceramic tapes conductive silver tracks that reach a low resistivity by flexography process. Flexography is a solution for the mass production of multimaterial microdevices offering a huge potential of commercialisation in the near future. In order to test the flexography printing process for microelectronic application on Low Temperature Cofired Ceramic (LTCC) tapes, a screen printing paste was optimised to reach flexography printing requirements. Ink with 30% silver per weight was prepared and printed by flexography, roll to roll (R2R) process, on LTCC substrates. Three to five print passes were performed. Printed lines were sintered during 10 min at a peak temperature of 850 °C under normal air atmosphere. Conductive lines, with a mean width of 190 μm, a mean thickness of 1.50 μm and a resistivity of 2.8 × 10?8 Ω m close to bulk silver resistivity, were achieved after sintering.  相似文献   

11.
《Applied Superconductivity》1999,6(10-12):541-545
A process has been developed to fabricate NbN tunnel junctions and 1.5 THz SIS mixers with Al electrodes and Al/SiO2/Al microstrip tuning circuits on thin Si membranes patterned on silicon on insulator wafers (SIMOX). High Josephson current density (Jc up to 2×104 A/cm2) NbN/AlN/NbN and NbN/MgO/NbN SIS junctions have been fabricated with a reasonably good Vm quality factor and energy gap values close to 5 meV at 4.2 K on (100) oriented 3 inches SIMOX wafers covered by a thin (∼8 nm) MgO buffer layer. The sputtering conditions critically influence the dielectric quality of both AlN and MgO tunnel barriers as well as the surface losses of NbN electrodes. 0.6-μm Si/SiO2 membranes are obtained after processing of a whole wafer and etching the individual chips in EDP. Such a technology is applied to the development of a waveguide/membrane SIS mixer for use around 1.5 THz.  相似文献   

12.
We report on the first fully mass printed large-area piezoelectric loudspeakers on paper. All functional layers were printed by means of flexography, alternatively screen and stencil printing, on conventional paper without any surface modification. We used polymers for the electrodes (poly(3,4-ethylendioxythiophene)/poly(4-styrenesulfonate, PEDOT:PSS)) as well as the piezoelectric layer (poly(vinylidene fluoride-trifluorethylene), P(VDF-TrFE)). It could be demonstrated that low-cost devices for mass markets can be realized successfully with the developed technology and process. Besides technical challenges, electrical and acoustic properties of printed speakers are investigated, taking the mechanical properties of the substrate and size of the active piezoelectric area into account. A sound pressure level up to 80 dB could be achieved.  相似文献   

13.
Bright and efficient violet quantum dot (QD) based light-emitting diodes (QD-LEDs) with heavy-metal-free ZnSe/ZnS have been demonstrated by choosing different hole transport layers, including poly(4-butyl-phenyl-diphenyl-amine) (poly-TPD), poly[9,9-dioctylfluorene-co-N-[4-(3-methylpropyl)]-diphenylamine] (TFB), and poly-N-vinylcarbazole (PVK). Violet QD-LEDs with maximum luminance of about 930 cd/m2, the maximum current efficiency of 0.18 cd/A, and the peak EQE of 1.02% when poly-TPD was used as HTL. Higher brightness and low turn-on voltage (3.8 V) violet QD-LEDs could be fabricated when TFB was used as hole transport material. Although the maximum luminance could reach up to 2691 cd/m2, the devices exhibited only low current efficiency (∼0.51 cd/A) and EQE (∼2.88%). If PVK is used as hole transport material, highly efficient violet QD-LEDs can be fabricated with lower maximum luminance and higher turn-on voltages compared with counterpart using TFB. Therefore, TFB and PVK mixture in a certain proportion has been used as HTL, turn-on voltage, brightness, and efficiency all have been improved greatly. The QD-LEDs is fabricated with 7.39% of EQE and 2856 cd/m2 of maximum brightness with narrow FWHM less than 21 nm. These results represent significant improvements in the performance of heavy-metal-free violet QD-LEDs in terms of efficiency, brightness, and color purity.  相似文献   

14.
《Organic Electronics》2014,15(8):1791-1798
An organic Write-Once-Read-Many (WORM) device based on poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) as the active layer was fabricated with an inverted architecture. Insertion of an ultrathin layer of poly(methylmethacrylate) (PMMA) between the bottom electrode and the PEDOT:PSS resulted in a systematic and substantial decrease in turn-on voltage, from 7.0 V to less than 1.0 V. An optimal thickness of the PMMA layer was found to yield the lowest consistent turn-on voltage of ∼0.8 V, with 0.5 V being the lowest value of all fabricated devices. The switching mechanism was attributed to filamentary doping of the PEDOT:PSS. Insertion of the PMMA acted to protect the underlying ZnO from being etched by the acidic PEDOT:PSS as well as to improve its wetting properties. Devices were demonstrated on both ITO and aluminum bottom electrodes, with aluminum yielding the highest ON/OFF ratios in the study. Owing to their inverted architecture, the devices demonstrated good stability, and the retention time of the ON-state was determined to be greater than twenty months while stored in air for devices with ITO bottom electrodes. In addition to deposition via spin-coating, blade-coating was demonstrated as a viable processing technique for applications requiring rapid or large-area manufacturing.  相似文献   

15.
Printed electronics represent an alternative solution for the manufacturing of low-temperature and large area flexible electronics. The use of inkjet printing is showing major advantages when compared to other established printing technologies such as gravure, screen or offset printing, allowing the reduction of manufacturing costs due to its efficient material usage and the direct-writing approach without requirement of any masks. However, several technological restrictions for printed electronics can hinder its application potential, e.g. the device stability under atmospheric or even more stringent conditions. Here, we study the influence of specific mechanical, chemical, and temperature treatments usually appearing in manufacturing processes for textiles on the electrical performance of all-inkjet-printed organic thin-film transistors (OTFTs). Therefore, OTFTs where manufactured with silver electrodes, a UV curable dielectric, and 6,13-bis(triisopropylsilylethynyl) pentance (TIPS-pentacene) as the active semiconductor layer. All the layers were deposited using inkjet printing. After electrical characterization of the printed OTFTs, a simple encapsulation method was applied followed by the degradation study allowing a comparison of the electrical performance of treated and not treated OTFTs. Industrial calendering, dyeing, washing and stentering were selected as typical textile processes and treatment methods for the printed OTFTs. It is shown that the all-inkjet-printed OTFTs fabricated in this work are functional after their submission to the textiles processes but with degradation in the electrical performance, exhibiting higher degradation in the OTFTs with shorter channel lengths (L = 10 μm).  相似文献   

16.
《Microelectronics Reliability》2014,54(9-10):1643-1647
We report on long-term air-stable organic rectifying diodes (ORD) on flexible substrates based on a solution deposited amorphous organic semiconductor (OSC) material, consisting of a co-polymer of arylamine and a fused aromatic species, reaching charge-carrier mobilities of μ = 0.05 cm2/V s (space charge limited current region) and current densities of up to 100 A/cm2 at 10 V levels with rectification ratios of 104 operating in the 10 kHz range. The ORDs exhibit a high degree of air-stability without any passivation with extremely reliable reproducibility. ORDs were fabricated on polyethylene naphthalate foils in a vertical sandwich structure with gold and aluminium as the injecting and blocking electrodes respectively via evaporation with the OSC spin-coated in between (Type1). In order to improve device performance of the ORDs, poly(ethylenedioxythiophene):poly(styrenesulfonate) was μ-dispensed as a hole-injection layer (Type2). The results for Type1-diodes show a really narrow spread of the diode characteristics, whereas for Type2 diodes the spread is slightly more but still acceptable. These ORDs prove themselves better than conventional pentacene diodes both in terms of reliability/repeatability of the diode performance and air-stability without an encapsulation layer, and goes towards the enabling of a viable and reliable low-cost fabrication method of radio frequency identification-tags using organic semiconductors.  相似文献   

17.
We report on copper (Cu) electrodes fabricated with inkjet-printed nanoparticle inks that are photonic sintered on a polymer dielectric layer and their application to source and drain electrodes in organic thin-film transistor (TFT). By using photonic sintering with a radiant energy density of 9 J/cm2, printed Cu nanoparticle layers on a glass substrate showed very low electrical resistivity levels of 7 μΩ cm. By optimizing the sintering conditions on polymer dielectric, the pentacene-based TFT using these printed Cu electrodes showed good mobility levels of 0.13 cm2/Vs and high on/off current ratios of about 106. In addition, we revealed that the crystal grain growth of pentacene near the printed Cu electrodes was inhibited by the thermal damage of polymer underlayer due to the high radiant energy density of the intense light.  相似文献   

18.
In order to obtain high-efficiency monochromatic red emission in polymer light-emitting devices, a tris(dibenzoylmethanato)(dipyrido(3,2-a:2′,3′-c)phenazine) europium [Eu(DBM)3(DPPZ)] doped single-emissive-layer devices were fabricated using a blend of poly(9,9-dioctyl-fluorence) and 2-tert-butyl-phenyl-5-biphenyl-1,3,4-oxadiazole as a host matrix by solution process. Significantly improved electro-luminescent properties with sharp red emission at 611.5 nm were displayed in the Eu(DBM)3(DPPZ)-doped devices at dopant concentrations from 1 to 8 wt.%. The highest luminance up to 1783 cd/m2 at 2 wt.% dopant concentration, as well as the maximum external quantum efficiency of 2.5% and current efficiency of 3.8 cd/A were obtained at 1 wt.% dopant concentration.  相似文献   

19.
A low temperature process to fabricate high resolution metallic lines on indium tin oxide (ITO) substrates using inkjet printing and subsequent electroless plating is described in this study. In this method, a thermo-sensitive (styrene-co-NIPAAm)/Pd (St-co-NIPAAm/Pd) nanoparticle-based ink was printed onto ITO substrates to create patterned catalytic sites, where nickel is subsequently deposited by electroless plating to form metal lines with desired width and conductivity. The inkjet printing variables such as droplet spacing and printing voltage, as well as the Ni electroless deposition variables such as deposition time and temperature were systematically investigated to obtain the optimum parameters. The adhesion of the deposited Ni–P coating to the ITO substrate was evaluated by a scotch tape test method. Optical microscope observation shows that a continuous pattern was formed with a printing voltage of 37 V and a droplet spacing of 50 μm. The irritating coffee ring effect was significantly suppressed by raising the substrate temperature to 50 °C and increasing the electroless plating temperature to 75 °C. High-resolution conductive metal lines can be easily and successfully fabricated using our method, which shows good potential for preparing the metallic lines as front or back electrodes in solar cells.  相似文献   

20.
This paper presents a compact, reliable 1.2 V low-power rail-to-rail class AB operational amplifier (OpAmp) suitable for integrated battery powered systems which require rail-to-rail input/output swing and high slew-rate while maintaining low power consumption. The OpAmp, fabricated in a standard 0.18 μm CMOS technology, exhibits 86 dB open loop gain and 97 dB CMRR. Experimental measurements prove its correct functionality operating with 1.2 V single supply, performing very competitive characteristics compared with other similar amplifiers reported in the literature. It has rail-to-rail input/output operation, 5 MHz unity gain frequency and a 3.15 V/μs slew-rate for a capacitive load of 100 pF, with a power consumption of 99 μW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号