首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, a micro-structured catalytic hollow fiber membrane reactor (CHFMR) has been prepared, characterized and evaluated for performing steam methane reforming (SMR) reaction, using Rh/CeO2 as the catalyst and a palladium membrane for separating hydrogen from the reaction. Preliminary studies on a catalytic hollow fiber (CHF), a porous membrane reactor configuration without the palladium membrane, revealed that stable methane conversions reaching equilibrium values can be achieved, using approximately 36 mg of 2 wt.%Rh/CeO2 catalyst incorporated inside the micro-channels of alumina hollow fibre substrates (around 7 cm long in the reaction zone). This proves the advantages of efficiently utilizing catalysts in such a way, such as significantly reduced external mass transfer resistance when compared with conventional packed bed reactors. It is interesting to observe catalyst deactivation in CHF when the quantity of catalyst incorporated is less than 36 mg, although the Rh/CeO2 catalyst supposes to be quite resistant against carbon formation. The “shift” phenomenon expected in CHFMR was not observed by using 100 mg of 2 wt.%Rh/CeO2 catalyst, mainly due to the less desired catalyst packing at the presence of the dense Pd separating layer. Problems of this type were solved by using 100 mg of 4 wt.% Rh/CeO2 as the catalyst in CHFMR, resulting in methane conversion surpassing the equilibrium conversions and no detectable deactivation of the catalyst. As a result, the improved methodology of incorporating catalyst into the micro-channels of CHFMR is the key to a more efficient membrane reactor design of this type, for both the SMR in this study and the other catalytic reforming reactions.  相似文献   

2.
Pd–Fe–Ox catalysts for low temperature CO oxidation were supported on SBA-15, CeO2 nano-particles with rich (111) facets and CeO2 nano-rod with rich (200) facets, and characterized by X-ray diffraction, low-temperature nitrogen adsorption, transmission electron microscopy and temperature-programmed reduction. The results showed that when CeO2 nano-rod was used as a support, Pd–Fe–Ox catalyst exhibits higher activity (T100 = 10 °C), resulting from the rich (200) facets of CeO2 nano-rod, which leads to a formation of large numbers of the oxygen vacancies on the surface of Pd–Fe–Ox catalysts.  相似文献   

3.
XPS shows that the surface chemical state of Pd in Pd/ZrPrOx is mainly Pd4 +, which is likely doped in ZrPrOx. However, the Pd4 + is segregated out as PdO when Pd/ZrPrOx is exposed at 1000 °C in air, resulting in the particle growth of Pd and deterioration. It has been found that the mixing Pd/ZrPrOx with CeO2 enhances the catalytic activity and thermal durability. Analysis using XPS and HAADF-STEM shows that the mixing effect of ceria is to stabilize Pd4 + at the high temperature and ceria also functions as an excellent support for the segregated PdO, which migrates from ZrPrOx to CeO2.  相似文献   

4.
《Fuel》2007,86(1-2):106-112
A series of Pd/HZSM-5 (Si/Al2 = 165) catalysts without and with additives of oxides of La, Ce, Sm, Nd and Tb were prepared by the impregnation method, and characterized by XRD, Raman spectra, N2-adsorption, CO-chemisorption, O2-TPD and CH4-TPR techniques. The catalysts were investigated for low-temperature CH4 combustion, and CeO2 was found to have a significant promoting effect on the activity of Pd/HZSM-5. Pd–Ce/HZSM-5 showed the best methane combustion activity and the improved thermal/hydrothermal reaction stability among tested catalysts. The characterization results of catalysts indicated that CeO2 can effectively promote the formation of crystalline PdO and weaken the bond strength of Pd–O on Pd–Ce/HZSM-5, resulting in that Pd–Ce/HZSM-5 possessed lower temperatures for oxygen desorption and CH4 reduction than Pd/HZSM-5. This could be ascribed to the covalent property and large oxygen storage/supplying capacity of CeO2. It is believed that more active PdO species on Pd/HZSM-5 for low-temperature methane combustion process could be effectively promoted due to the introduction of CeO2.  相似文献   

5.
Hydrodeoxygenation of phenol, as model compound of bio-oil, was investigated over Pd catalysts, using formic acid as a hydrogen donor. The order of activity for deoxygenation of phenol with Pd catalysts was found to be: Pd/SiO2 > Pd/MCM-41 > Pd/CA > Pd/Al2O3 > Pd/HY  Pd/ZrO2  Pd/CW > Pd/HSAPO-34 > Pd/HZSM-5. The good performance of Pd/SiO2 is owing to its proper pore structure and large specific surface area. The high level of Brønsted acid sites in SiO2 also favors the deoxygenation of phenol.  相似文献   

6.
《Catalysis Today》2005,99(1-2):217-226
Results obtained by adding gaseous promoters (CO2, N2O and H2) into the reaction feed are presented for two different reactions: (i) oxidative dehydrogenation of propane (ODP), and (ii) catalytic combustion of methane (CCM). The ODP is performed on a mixture of NiMoO4 and CeO2, by adding 3 vol.% CO2 into the feed, and on a NiMoO4/[Si,V]-MCM-41 mesoporous catalyst, in the presence of 1 or 5 vol.% N2O in the feed. The CCM is carried out (i) on Pd(2 wt.%)/CexZr1−xO2 and Pd(2 wt.%)/γ-Al2O3 catalysts, on pure CeO2 and on a mixture of Pd(2 wt.%)/γ-Al2O3 and CeO2 powders, by adding 3 vol.% CO2 into the feed, and (ii) on a Pd(2 wt.%)/γ-Al2O3 catalyst, in the presence of various amounts of H2 in the feed. It is shown, through all these various examples, that the activity and/or the selectivity of catalysts can be improved by tuning, in a very controlled manner, the oxidation state of active sites via the use of these gaseous promoters.  相似文献   

7.
The effect of CeO2 loading on the surface properties and catalytic behaviors of CeO2–Al2O3-supported Pd catalysts was studied in the process of steam reforming of methane. The catalysts were characterized by SBET, X-ray diffraction (XRD), temperature-programmed reduction (TPR), UV–vis diffuse reflectance spectroscopy (DRS) and Fourier transform infrared spectroscopy (FTIR). The XRD measurements indicated that palladium particles on the surface of fresh and reduced catalysts are well dispersed. TPR experiments revealed a heterogeneous distribution of PdO species over CeO2–Al2O3 supports; one fraction of large particles, reducible at room temperature, another fraction interacting with CeO2 and Al2O3, reducible at higher temperatures of 347 and 423 K, respectively. The PdO species reducible at room temperature showed lower CO adsorption relative to the PdO species reducible at high temperature. In contrast to Pd/Al2O3, the FTIR results revealed that CeO2-containing catalyst with CeO2 loading ≥12 wt.% show lower ratio (LF/HF) between the intensity of the CO bands in the bridging mode at low frequency (LF) and the linear mode at high frequency (HF). This ratio was constant with increasing the temperature of reduction. The FTIR spectra and the measurement of Pd dispersion suggested that Pd surface becomes partially covered with ceria at all temperature of reduction and with increasing ceria loading in Pd/CeO2–Al2O3 catalysts. Although the PdO/Al2O3 showed higher Pd dispersion compared to that of CeO2-containing catalysts, the addition of ceria resulted in an increase of the turnover rate and specific rate to steam reforming of methane. The CH4 turnover rate of Pd/CeO2–Al2O3 catalysts with ceria loading ≥12 wt.% was around four orders of magnitude higher compared to that of Pd/Al2O3 catalyst. The increase of the activity of the catalysts was attributed to various effects of CeO2 such as: (i) change of superficial Pd structure with blocking of Pd sites; (ii) the jumping of oxygen (O*) from ceria to Pd surface, which can decrease the carbon formation on Pd surface. Considering that these effects of CeO2 are opposite to changes of the reaction rate, the increase of specific reaction rate with enhancing the ceria loading suggests that net effect results in the increase of the accessibility of CH4 to metal active sites.  相似文献   

8.
CeO2 supports were prepared by a citrate (C) or a precipitation method (P) before deposition of vanadia by wet impregnation to obtain supported V/CeO2 catalysts. The V/CeO2-P catalyst is more active, reaching ≈ 100% NO conversion and N2 selectivity already below 225 °C at a space velocity of GHSV = 70,000 h 1. XRD, UV-vis-DRS, Raman, pseudo-in-situ-XPS and operando-EPR spectroscopy revealed that this is due to higher surface area and a more effective incorporation of V sites into the support surface, which keeps them in their active valence states + 5 and + 4 and prevents reduction to inactive V3 + as observed on V/CeO2-C.  相似文献   

9.
The production of hydrogen (H2) with a low concentration of carbon monoxide (CO) via steam reforming of methanol (SRM) over Au/CuO, Au/CeO2, (50:50)CuO–CeO2, Au/(50:50)CuO–CeO2, and commercial MegaMax 700 catalysts were investigated over reaction temperatures between 200 °C and 300 °C at atmospheric pressure. Au loading in the catalysts was maintained at 5 wt%. Supports were prepared by co-precipitation (CP) whilst all prepared catalysts were synthesized by deposition–precipitation (DP). The catalysts were characterized by Brunauer–Emmett–Teller (BET) surface area, X-ray diffraction (XRD), temperature-programmed reduction (TPR), and scanning electron microscopy (SEM). Au/(50:50)CuO–CeO2 catalysts expressed a higher methanol conversion with negligible amount of CO than the others due to the integration of CuO particles into the CeO2 lattice, as evidenced by XRD, and a interaction of Au and CuO species, as evidenced by TPR. A 50:50 Cu:Ce atomic ratio was optimal for Au supported on CuO–CeO2 catalysts which can then promote SRM. Increasing the reaction time, by reducing the liquid feed rate from 3 to 1.5 cm3 h?1, resulted in a catalytic activity with complete (100%) methanol conversion, and a H2 and CO selectivity of ~82% and ~1.3%, respectively. From stability testing, Au/(50:50)CuO–CeO2 catalysts were still active for 540 min use even though the CuO was reduced to metallic Cu, as evidenced by XRD. Therefore, it can be concluded that metallic Cu is one of active components of the catalysts for SRM.  相似文献   

10.
In order to develop a cheaper and durable catalyst for methanol electrooxidation reaction, ceria (CeO2) as a co-catalytic material with Pt on carbon was investigated with an aim of replacing Ru in PtRu/C which is considered as prominent anode catalyst till date. A series of Pt-CeO2/C catalysts with various compositions of ceria, viz. 40 wt% Pt-3–12 wt% CeO2/C and PtRu/C were synthesized by wet impregnation method. Electrocatalytic activities of these catalysts for methanol oxidation were examined by cyclic voltammetry and chronoamperometry techniques and it is found that 40 wt% Pt-9 wt% CeO2/C catalyst exhibited a better activity and stability than did the unmodified Pt/C catalyst. Hence, we explore the possibility of employing Pt-CeO2 as an electrocatalyst for methanol oxidation. The physicochemical characterizations of the catalysts were carried out by using Brunauer Emmett Teller (BET) surface area and pore size distribution (PSD) measurements, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) techniques. A tentative mechanism is proposed for a possible role of ceria as a co-catalyst in Pt/C system for methanol electrooxidation.  相似文献   

11.
Palladium-based catalysts were prepared by the impregnation (I) and ion-exchange method (E) with ZSM-5 and γ-Al2O3 as support respectively. The high activity of Pd/ZSM-5(I) and Pd-ZSM-5(E) catalysts for methane combustion was observed. The order of activity is consistent with Brønsted acidity of catalysts: Pd/ZSM-5(I) > Pd-ZSM-5(E) > Pd/Al2O3. It is shown by FT-IR that methane adsorbs on acidic bridging hydroxyl groups of ZSM-5-supported Pd catalysts. Symmetric v1 C–H stretching vibrations of methane shift to low frequency due to the interaction between methane molecules and Brønsted acid sites or Pd2+, indicating that methane molecules can be activated.  相似文献   

12.
A structured Co3O4–CeO2 composite oxide, containing 30% by weight of Co3O4, has been prepared over a cordieritic honeycomb support. The bimetallic, Pd–Pt catalyst has been obtained by impregnation of the supported Co3O4–CeO2 with Pd and Pt precursors in order to obtain a total metal loading of 50 g/ft3.CO, CH4 combined oxidation tests were performed over the catalyzed monoliths in realistic conditions, namely GHSV = 100,000 h−1 and reaction feed close to emission from bi-fuel vehicles. The Pd–Pt un-promoted Co3O4–CeO2 is promising for cold-start application, showing massive CO conversion below 100 °C, in lean condition.A strong enhancement of the CH4 oxidation activity, between 400 and 600 °C, has been observed by addition to the Co3O4–CeO2 of a low amount of Pd–Pt metals.  相似文献   

13.
The catalytic wet air oxidation of aqueous solutions of p-hydroxybenzoic acid has been carried out over CeO2–TiO2 supported ruthenium catalysts (Ru/Ce–Ti) at 140 °C and 50 bar of air. High activity of ruthenium supported catalysts was observed. It was found that the decrease of the molar ratio Ce/Ti from 3 to 1/3, improves the activity of Ru catalysts. The activity of the samples decreases in the following order: Ru/Ce–Ti (1/3) > Ru/CeO2  Ru/TiO2 > Ru/TiO2DT51. Characterization of samples was performed by means of N2 adsorption–desorption, XRD, UV–visible, TPR, SEM and TEM.  相似文献   

14.
Noble-metal promoters have been added to catalysts for reactions such as steam-methane reforming, but have rarely been applied to systems that produce H2 from larger, biomass-derived molecules, such as polyols or cellulose. We have previously found that nickel catalysts supported on mesocellular-foam-(MCF)-type silica catalyze H2 formation during cellulose pyrolysis, and sought to increase their activity. Thus, palladium-promoted nickel catalysts supported on MCF were prepared, and their activities were tested in cellulose pyrolysis (RT  800 °C, 40 °C/min) under dry argon. A thermogravimetric analyzer–mass spectrometer (TG–MS) was used to semi-quantitatively monitor the gases, especially H2, that were released during pyrolysis over catalysts with and without Pd promoters. Although the Pd promoters had little impact on the fraction of H2 in the product gas, adding ≥ 0.4 wt.% Pd enhanced the H2 yield from cellulose pyrolysis by increasing the total gas yield from the reaction. Thus the promoter improved H2 yield by enhancing the tar-cracking activity of the catalyst. A 5%Ni/MCF catalyst that was doped with 0.7 wt.% Pd yielded 85 cm3 H2/g cellulose, which was 15% more H2 than was obtained when the catalyst was 5%Ni/MCF.  相似文献   

15.
A series of Ru/Sm2O3–CeO2 catalysts were prepared by using a co-precipitation (CP) method and characterized by XRD, BET, SEM, H2-TPD-MS, H2-TPR and CO chemisorption. The activity test shows that ammonia concentration of the catalyst with 7% Sm is 13.4% at 10 MPa, 10,000 h 1, 425 °C, which is 21% higher than that of Ru/CeO2. Such high catalytic activity was due to three effects: the morphology changes of catalyst, electrodonating property of partially reduced CeO2  x to Ru metal and the property of easily hydrogen desorption derived from the presence of Sm3+ in ceria.  相似文献   

16.
Pure oxides of ceria (CeO2) and zirconia (ZrO2) were prepared by precipitation method and a catalyst comprising of 25 mol% of CeO2 and 75 mol% of ZrO2 (25CZ) mixed metal oxide was prepared by co-precipitation method and also a catalyst with 25 wt% of 25CZ (25 mol% of CeO2 and 75 mol% of ZrO2) and 75 wt% SBA-15(25/25CZS) was prepared by precipitation–deposition method. Aqueous NH3 solution was used as a hydrolyzing agent for all the precipitation reactions. These catalysts were characterized by X-ray diffraction and nitrogen adsorption–desorption techniques for the confirmation of SBA-15 structural intactness. All these catalysts were found to be effective for the oxidative dehydrogenation of ethylbenzene (ODHEB) to styrene in the presence of CO2 and also it was observed that there was a sequential enhancement in the catalytic activity from individual oxides to mixed oxides followed by supported mixed oxide catalysts. Of the catalysts studied in this work, the supported 25/25CZS catalyst exhibited the superior activity, which was about 10–20 times higher than the activity of bulk single oxides in terms of turn over frequency.  相似文献   

17.
The nanocrystalline TiO2 materials with average crystallite sizes of 9 and 15 nm were synthesized by the solvothermal method and employed as the supports for preparation of bimetallic Au/Pd/TiO2 catalysts. The average size of Au–Pd alloy particles increased slightly from sub-nano (< 1 nm) to 2–3 nm with increasing TiO2 crystallite size from 9 to 15 nm. The catalyst performances were evaluated in the liquid-phase selective hydrogenation of 1-heptyne under mild reaction conditions (H2 1 bar, 30 °C). The exertion of electronic modification of Pd by Au–Pd alloy formation depended on the TiO2 crystallite size in which it was more pronounced for Au/Pd on the larger TiO2 (15 nm) than on the smaller one (9 nm), resulting in higher hydrogenation activity and lower selectivity to 1-heptene on the former catalyst.  相似文献   

18.
In this article, a facile one-step strategy for the synthesis of ternary MnO2–Fe2O3–CeO2–Ce2O3/carbon nanotubes (CNT) catalysts was discussed. The as-prepared catalysts exhibited 73.6–99.4% NO conversion at 120–180 °C at a weight hourly space velocity (WHSV) of 210 000 ml·gcat 1·h 1, which benefited from the formation of amorphous MnO2, Fe2O3, CeO2, and Ce2O3, as well as high Ce3 + and surface oxygen (Oε) contents. The mechanism of formation of MnO2–Fe2O3–CeO2–Ce2O3/CNT catalysts was also proposed.  相似文献   

19.
《Ceramics International》2015,41(4):5614-5620
A sol–gel method was used to prepare Fe/CeO2 hollow sphere nanocomposites. For comparison, a direct calcination of cerium nitrate was used to prepare CeO2 nanoparticles and Fe/CeO2 nanoparticles. The photocatalytic reduction of Hg was used to study the photocatalytic performance of the prepared nanocomposite photocatalysts using visible-light irradiation. The BET surface areas of the CeO2 nanoparticles and CeO2 hollow spheres were 76 and 160 m2/g, respectively. The BET surface area of the hollow sphere CeO2 and CeO2 nanoparticles decreased to 145 and 57 m2/g, respectively, by adding iron nanometal. The TEM results revealed that the shapes of the CeO2 nanoparticle and hollow sphere materials are spherical nanoparticles and uniform nanospheres, respectively. The Fe/CeO2 nanoparticles and Fe/CeO2 hollow spheres are spherical nanoparticles and core–shell, respectively. The photocatalytic performance by the Fe/CeO2 hollow spheres was 50, 3.9, and 1.4 times more efficient than that observed from the CeO2 nanoparticles, Fe/CeO2 nanoparticles, and CeO2 hollow spheres, respectively.  相似文献   

20.
A new bimetallic catalyst (Ag–Co/CeO2) was studied for simultaneously catalytic removal of NO and CO in the absence or presence of O2. CeO2 prepared by homogeneous precipitation method was optimized as supports for the active components. The addition of Ag on CeO2 greatly improved the catalytic activities in the lower temperature regions (⩽300 °C), and the introduction of Co on CeO2 increased the activities at higher temperatures (⩾250 °C). The bimetallic Ag–Co/CeO2 catalyst combined the advantages of the corresponding individual metal supported catalysts and showed superior activity due to the synergetic effect. The effect of support, temperature, loading amount, GHSV and oxygen on catalysis was investigated. NO and CO could be completely removed in the temperature range of 200–600 °C at a very high space velocity of 120 000 h−1. No deactivation was observed over 4% Ag–0.4% Co/CeO2 catalyst even after 50 h test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号