首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultralow power chemical sensing is essential toward realizing the Internet of Things. However, electrically driven sensors must consume power to generate an electrical readout. Here, a different class of self‐powered chemical sensing platform based on unconventional photovoltaic heterojunctions consisting of a top graphene (Gr) layer in contact with underlying photoactive semiconductors including bulk silicon and layered transition metal dichalcogenides is proposed. Owing to the chemically tunable electrochemical potential of Gr, the built‐in potential at the junction is effectively modulated by absorbed gas molecules in a predictable manner depending on their redox characteristics. Such ability distinctive from bulk photovoltaic counterparts enables photovoltaic‐driven chemical sensing without electric power consumption. Furthermore, it is demonstrated that the hydrogen (H2) sensing properties are independent of the light intensity, but sensitive to the gas concentration down to the 1 ppm level at room temperature. These results present an innovative strategy to realize extremely energy‐efficient sensors, providing an important advancement for future ubiquitous sensing.  相似文献   

2.
An all‐carbon pressure sensor is designed and fabricated based on reduced graphene oxide (rGO) nanomaterials. By sandwiching one layer of superelastic rGO aerogel between two freestanding high‐conductive rGO thin papers, the sensor works based on the contact resistance at the aerogel–paper interfaces, getting rid of the alien materials such as polymers and metals adopted in traditional sensors. Without the limitation of alien materials, the all‐carbon sensors demonstrate an ultrawide detecting range (0.72 Pa–130 kPa), low energy consumption (≈0.58 µW), ultrahigh sensitivity (349–253 kPa?1) at low‐pressure regime (<1.4 Pa), fast response time (8 ms at 1 kPa), high stability (10 000 unloading–loading cycles between 0 and 1 kPa), light weight (<10 mg), easily scalable fabrication process, and excellent chemical stability. These merits enable them to detect real‐time human physiological signals and monitor the weights of various droplets of not only water but also hazardous chemical reagents including strong acid, strong alkali, and organic solvents. This shows their great potential applications in real‐time health monitoring, sport performance detecting, harsh environment‐related robotics and industry, and so forth.  相似文献   

3.
生物模板法是一种融合了生命科学和材料科学而发展起来的制备纳米材料和纳米结构的新方法.自然进化形成的组织结构互不相同的各种生物体为模板的选择提供了丰富而廉价的素材,并且对研究结构与性能的关系有着重要意义.综述了近年来生物模板在纳米材料制备中的应用进展,并对此领域未来的发展进行了展望.  相似文献   

4.
Graphene is an increasingly important nanomaterial that has shown great promise in the area of nanotechnology. In this study, fluorescein‐functionalized graphene oxide (GO) is synthesized via a polyethylene glycol (PEG) bridge and its application in intracellular imaging is explored. GO is an oxide form of graphene that provides an ideal platform to prepare graphene‐based functional nanomaterials via chemical modification. The PEG bridge was introduced to prevent GO‐induced quenching of conjugated fluorescein. The fluorescein–PEG–GO conjugate thus prepared exhibits excellent pH‐tunable fluorescent properties and, more significantly, can be efficiently taken up by cells and serve as a fluorescent nanoprobe for intracellular imaging.  相似文献   

5.
The fast industrialization process has led to global challenges in the energy crisis and environmental pollution, which might be solved with clean and renewable energy. Highly efficient electrochemical systems for clean‐energy collection require high‐performance electrocatalysts, including Au, Pt, Pd, Ru, etc. Graphene, a single‐layer 2D carbon nanosheet, possesses many intriguing properties, and has attracted tremendous research attention. Specifically, graphene and graphene derivatives have been utilized as templates for the synthesis of various noble‐metal nanocomposites, showing excellent performance in electrocatalytic‐energy‐conversion applications, such as the hydrogen evolution reaction and CO2 reduction. Herein, the recent progress in graphene‐based noble‐metal nanocomposites is summarized, focusing on their synthetic methods and electrocatalytic applications. Furthermore, some personal insights on the challenges and possible future work in this research field are proposed.  相似文献   

6.
7.
纳米材料及其应用研究进展   总被引:1,自引:0,他引:1  
纳米材料在机械、电子、化工、医药、纺织和军工等方面具有广泛的应用潜力。文章简述了纳米材料的种类、特性以及应用研究进展,并就该研究领域的发展方向提出了一些建议。  相似文献   

8.
Graphene, the thinnest two dimensional carbon material, has become the subject of intensive investigation in various research fields because of its remarkable electronic, mechanical, optical and thermal properties. Graphene‐based electrodes, fabricated from mechanically cleaved graphene, chemical vapor deposition (CVD) grown graphene, or massively produced graphene derivatives from bulk graphite, have been applied in a broad range of applications, such as in light emitting diodes, touch screens, field‐effect transistors, solar cells, supercapacitors, batteries, and sensors. In this Review, after a short introduction to the properties and synthetic methods of graphene and its derivatives, we will discuss the importance of graphene‐based electrodes, their fabrication techniques, and application areas.  相似文献   

9.
Cellulose is the most abundant natural polymer on earth, providing a sustainable green resource that is renewable, degradable, biocompatible, and cost effective. Recently, nanocellulose‐based mesoporous structures, flexible thin films, fibers, and networks are increasingly developed and used in photovoltaic devices, energy storage systems, mechanical energy harvesters, and catalysts components, showing tremendous materials science value and application potential in many energy‐related fields. In this Review, the most recent advancements of processing, integration, and application of cellulose nanomaterials in the areas of solar energy harvesting, energy storage, and mechanical energy harvesting are reviewed. For solar energy harvesting, promising applications of cellulose‐based nanostructures for both solar cells and photoelectrochemical electrodes development are reviewed, and their morphology‐related merits are discussed. For energy storage, the discussion is primarily focused on the applications of cellulose‐based nanomaterials in lithium‐ion batteries, including electrodes (e.g., active materials, binders, and structural support), electrolytes, and separators. Applications of cellulose nanomaterials in supercapacitors are also reviewed briefly. For mechanical energy harvesting, the most recent technology evolution in cellulose‐based triboelectric nanogenerators is reviewed, from fundamental property tuning to practical implementations. At last, the future research potential and opportunities of cellulose nanomaterials as a new energy material are discussed.  相似文献   

10.
The treatment of organic wastewater is of great significance. Carbon nanotube (CNT)/graphene‐based nanomaterials have great potential as absorbent materials for organic wastewater treatment owing to their high specific surface area, mesoporous structure, tunable surface properties, and high chemical stability; these attributes allow them to endure harsh wastewater conditions, such as acidic, basic, and salty conditions at high concentrations or at high temperatures. Although a substantial amount of work has been reported on the performance of CNT/graphene‐based nanomaterials in organic wastewater systems, engineering challenges still exist for their practical application. Herein, the adsorption mechanism of CNT‐ and graphene‐based nanomaterials is summarized, including the adsorption mechanism of CNTs and graphene at the atomic and molecular levels, their hydrophilic and hydrophobic surface properties, and the structure–property relationship required for adsorption to occur. Second, the structural modification and recombination methods of CNT‐ and graphene‐based adsorbents for various organic wastewater systems are introduced. Third, the engineering challenges, including the molding of macroscopically stable adsorbents, adsorption isotherm models and adsorption kinetic behaviors, and reversible adsorption performance compared to that of activated carbon (AC) are discussed. Finally, cost issues are discussed in light of scalable and practical application of these materials.  相似文献   

11.
12.
Nanowires are important potential candidates for the realization of the next generation of sensors. They offer many advantages such as high surface‐to‐volume ratios, Debye lengths comparable to the target molecule, minimum power consumption, and they can be relatively easily incorporated into microelectronic devices. Accordingly, there has been an intensified search for novel nanowire materials and corresponding platforms for realizing single‐molecule detection with superior sensing performance. In this work, progress made towards the use of nanowires for achieving better sensing performance is critically reviewed. In particular, various nanowires types (metallic, semiconducting, and insulating) and their employment either as a sensor material or as a template material are discussed. Major obstacles and future steps towards the ultimate nanosensors based on nanowires are addressed.  相似文献   

13.
14.
模板技术在纳米材料制备中的应用与发展   总被引:2,自引:0,他引:2  
杜朝锋  黄英  秦秀兰 《材料导报》2006,20(Z1):38-42
模板法制备的纳米材料具有形貌、结构、尺寸、取向等可控的特点,是一种简便有效的方法.介绍了在纳米材料合成中常见的几种模板,包括多孔阳极氧化铝模板、痕迹刻蚀聚合物模板、共聚物模板、中孔材料、碳纳米管、生物模板、聚集体模板与混合模板;论述了利用模板技术可以制备材料的类型及模板技术在核壳结构材料、空心微球材料、生物技术方面的新进展.  相似文献   

15.
Graphene is the strongest and stiffest material ever identified and the best electrical conductor known to date, making it an ideal candidate for constructing nanocomposites used in flexible energy devices. However, it remains a great challenge to assemble graphene nanosheets into macro‐sized high‐performance nanocomposites in practical applications of flexible energy devices using traditional approaches. Nacre, the gold standard for biomimicry, provides an excellent example and guideline for assembling two‐dimensional nanosheets into high‐performance nanocomposites. This review summarizes recent research on the bioinspired graphene‐based nanocomposites (BGBNs), and discusses different bioinspired assembly strategies for constructing integrated high‐strength and ‐toughness graphene‐based nanocomposites through various synergistic effects. Fundamental properties of graphene‐based nanocomposites, such as strength, toughness, and electrical conductivities, are highlighted. Applications of the BGBNs in flexible energy devices, as well as potential challenges, are addressed. Inspired from the past work done by the community a roadmap for the future of the BGBNs in flexible energy device applications is depicted.  相似文献   

16.
光纤化学传感器的研究及其在环境分析中的应用   总被引:1,自引:0,他引:1  
本文综述了光纤化学传感器的特点、工作原理、类型及各类光纤化学传感器(气敏、pH、金属离子和有机化合物等)的研究进展及其在环境分析中的应用,分析了近年来光纤化学传感器的技术发展和应用趋势。  相似文献   

17.
18.
19.
This study presents a low‐cost, tunable, and stretchable sensor fabricated based on spandex (SpX) yarns coated with graphene nanoplatelets (GnP) through a dip‐coating process. The SpX/GnP is wrapped into a stretchable silicone rubber (SR) sheath to protect the conductive layer against harsh conditions, which allows for fabricating washable wearable sensors. Dip‐coating parameters are optimized to obtain the maximum GnP coating rate. The covering sheath is tailored to achieve high stretchability beyond the sensing limit of 104% for SpX/GnP/SR sensors. Adjustable sensitivity is attained by manipulating SpX immersion times broadening its application for a wide range of strains: Gauge factors as high as two orders of magnitude are achieved at tensile strains greater than ≈40%. The fabricated sensors are tested for two applications: First, the SpX/GnP sensors are integrated into composite fabrics (with no negative impact on the structural integrity of the part) for screening the yarn displacements, resin flow, solidification during the hot press forming process, and structural health monitoring under mechanical loads with minimal cross‐sensitivity to temperature/humidity. Second, the capability of SpX/GnP/SP sensors in detection of a wide range of bodily motions (from the joint motion to arterial blood pressure) is demonstrated.  相似文献   

20.
Together with the evolution of digital health care, the wearable electronics field has evolved rapidly during the past few years and is expected to be expanded even further within the first few years of the next decade. As the next stage of wearables is predicted to move toward integrated wearables, nanomaterials and nanocomposites are in the spotlight of the search for novel concepts for integration. In addition, the conversion of current devices and attachment‐based wearables into integrated technology may involve a significant size reduction while retaining their functional capabilities. Nanomaterial‐based wearable sensors have already marked their presence with a significant distinction while nanomaterial‐based wearable actuators are still at their embryonic stage. This review looks into the contribution of nanomaterials and nanocomposites to wearable technology with a focus on wearable sensors and actuators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号