首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Efficient red, orange, green and blue monochrome phosphorescent organic light-emitting diodes (OLEDs) with simplified structure were fabricated based on ultrathin emissive layers. The maximum efficiencies of red, orange, green and blue OLEDs are 19.3 cd/A (17.3 lm/W), 45.7 cd/A (43.2 lm/W), 46.3 cd/A (41.6 lm/W) and 11.9 cd/A (9.2 lm/W). Moreover, efficient and color stable white OLEDs based on two complementary colors of orange/blue, three colors of red/orange/blue, and four colors of red/orange/green/blue were demonstrated. The two colors, three colors and four colors white OLEDs have maximum efficiencies of 30.9 cd/A (27.7 lm/W), 30.3 cd/A (27.2 lm/W) and 28.9 cd/A (26.0 lm/W), respectively. And we also discussed the emission mechanism of the designed monochrome and white devices.  相似文献   

2.
We report a high performance orange organic light-emitting diode (OLED) where red and green phosphorescent dyes are doped in an exciplex forming co-host as separate red and green emitting layers (EMLs). The OLED shows a maximum external quantum efficiency (EQE) of 22.8%, a low roll-off of efficiency with an EQE of 19.6% at 10,000 cd/m2, and good orange color with a CIE coordinate of (0.442, 0.529) and no color change from 1000 to 10,000 cd/m2. The exciplex forming co-host system distributes the recombination zone all over the EMLs and reduces the triplet exciton quenching processes.  相似文献   

3.
We demonstrate simplified doping-free orange phosphorescent organic light-emitting diodes (OLEDs) based on ultrathin emission layer. The optimized orange device has the maximum current efficiency of 52.1 cd/A and power efficiency of 36.3 lm/W, respectively. Efficient simplified doping-free white OLEDs employing blue and orange ultrathin emission layers have excellent color stability, which is attributed to the avoidance of the movement of charges recombination zone and no differential color aging. One white device exhibits high efficiency of 33.6 cd/A (30.1 lm/W). Moreover, the emission mechanism of doping-free orange and white OLEDs is also discussed.  相似文献   

4.
N,N-diphenyl-4-(quinolin-8-yl)aniline (SQTPA), which composes a triphenylamine group and a quinoline group, has been synthesized and employed as a hole-transporter in phosphorescent OLEDs. It has been proved that SQTPA has efficient hole-transport property with a hole-mobility of 3.60 × 10−5 cm2/V s at the electric field of 800 (V/cm)1/2, which is higher than that of NPB (1.93 × 10−5 cm2/V s). Blue, orange and green phosphorescent OLEDs have been fabricated based on FIrpic, Ir(2-phq)3, Ir(ppy)3 with typical structures by using SQTPA as the hole-transporter. The SQTPA-based devices show maximum external quantum efficiencies and power efficiencies of 17.5%, 32.5 lm/W for blue, 12.3%, 20.5 lm/W for orange and 20.3%, 64.5 lm/W for green. The performances of SQTPA-based devices are much better than that of NPB-based phosphorescent OLEDs with similar structures. Thought of its very simple molecular structure and easy synthetic route, SQTPA should be an efficient hole-transporter for phosphorescent OLEDs.  相似文献   

5.
Low color temperature (CT) lighting provides a warm and comfortable atmosphere and shows mild effect on melatonin suppression. A high-efficiency low CT organic light emitting diode can be easily fabricated by spin coating a single white emission layer. The resultant white device shows an external quantum efficiency (EQE) of 22.8% (34.9 lm/W) with CT 2860 K at 100 cd/m2, while is shown 18.8% (24.5 lm/W) at 1000 cd/m2. The high efficiency may be attributed to the use of electroluminescence efficient materials and the ambipolar-transport host. Besides, proper device architecture design enables excitons to form on the host and allows effective energy transfer from host to guest or from high triplet guest to low counterparts. By decreasing the doping concentration of blue dye in the white emission layer, the device exhibited an orange emission with a CT of 2280 K. An EQE improvement was observed for the device, whose EQE was 27.4% (38.8 lm/W) at 100 cd/m2 and 20.4% (24.6 lm/W) at 1000 cd/m2.  相似文献   

6.
We demonstrated highly efficient traditional orange emission fluorescent OLEDs with simple device structure by utilizing energy transfer from bilayer interface TADF exciplex to dopant. With rubrene as the dopant, under the optimized concentration of 1.5%, the device achieved maximum current efficiency, power efficiency and EQE of 25.3 cd/A, 22.6 lm/W and 8.1%, respectively. Even at the luminance of 1000 cd/m2, the EQE also remained 6.9%. The obtainment of so high efficiency could be attributed to highly efficient RISC efficiency of triplet excitons and energy transfer efficiency from TADF exciplex to dopant. The more detailed working mechanism was also argued.  相似文献   

7.
We demonstrated highly efficient and color stable single-emitting-layer fluorescent WOLEDs using blue thermally activated delayed fluorescent material of bis[4-(9,9-dimethyl-9,10-dihydroacridine)phenyl]sulfone (DMAC-DPS) as host and traditional orange fluorescent material of (5,6,11,12)-tetraphenyl-naphthacene (rubrene) as dopant. At a low dopant concentration of 0.6 wt%, we achieved the efficient white emission that comprised of blue host and orange dopant. The maximum current efficiency, power efficiency and external quantum efficiency were 20.2 cd A−1, 15.9 lm W−1 and 7.48%, respectively. Besides, the Commission Internationale de I’Eclairage coordinates were almost the same with the increased voltage, which shifted from (0.359, 0.439) to (0.358, 0.430) as the voltage rose from 5 V to 8 V. The achievement of so high efficiency was attributed to the efficient up-conversion of DMAC-DPS triplet excitons and efficient energy transfer from host to dopant by Förster transfer mechanism. The more detailed working mechanism was also argued.  相似文献   

8.
New host materials (BCz–DBT and BCz–DBF) are synthesized by regrouped 3,3-bicarbazole (BCz) and dibenzothiophene (DBT)/dibenzofuran (DBF). Their thermal, electrochemical, electronic absorption and photoluminescent properties are also carefully investigated. The materials exhibit high glass transition temperatures (Tg) of 134 °C and 139 °C, respectively. This kind of molecular design can effectively achieve high triplet energies and suitable highest occupied molecular orbital and lowest unoccupied molecular orbital (HOMO/LUMO) energy levels. High external quantum efficiencies (EQE) of sky blue (EQE = 25%) and three-color white (EQE = 21.4%) phosphorescent OLEDs have been achieved by using BCz–DBF as the host material.  相似文献   

9.
In this article we report on the performances of phosphorescent orange organic light-emitting diodes (OLEDs) having a high operational stability. The fabricated devices all consist of a “hybrid” structure, where the hole-injection layer was processed from solution, while the rest of the organic materials were deposited by vacuum thermal evaporation. A device stack having an emissive layer comprising a carbazole-based host TCzMe doped with the orange phosphor tris(2-phenylquinoline)iridium(III) [Ir(2-phq)3] shows improved efficiencies compared to a the same device with the standard N,N′-bis(naphthalen-1-yl)-N,N′-bis(phenyl)-benzidine (NPB) as host material. External quantum efficiency (EQE) up to 7.4% and a power efficiency of 16 lm/W were demonstrated using TCzMe. Most importantly, the operational stability of the device was largely improved, resulting in extrapolated values reaching lifetimes well above 100,000 h at initial luminance of 1000 Cd/m2.  相似文献   

10.
A new multifunctional blue-emitting terfluorene derivative (TFDPA) featured with triphenylamine groups for hole-transportation and long alkyl chains for solution processability on the conjugation inert bridge centers was reported. TFDPA can give homogeneous thin film by solution process and exhibits high hole mobility (μh  10?3 cm2 V?1 s?1) and suitable HOMO for hole injection. Particularly, TFDPA performs efficient deep-blue emission with high quantum yield (~100% in solution, 43% in thin film) and suitable triplet energy (ET = 2.28 eV), making solution-processed OLED devices of using TFDPA as blue emitter and as host for iridium-containing phosphorescent dopants feasible. The solution-processed nondoped blue OLED device gives saturated deep-blue electroluminescence [CIE = (0.17, 0.07)] with EQE of 2.7%. TFDPA-hosted electrophosphorescent devices performed with EQE of 6.5% for yellow [(Bt)2Ir(acac)], 9.3% of orange [Ir(2–phq)3], and 6.9% of red [(Mpq)2Ir(acac)], respectively. In addition, with careful control on the doping concentration of [(Bt)2Ir(acac)], a solution-processed fluorescence–phosphorescence hybrided two-color-based WOLED with EQE of 3.6% and CIE coordinate of (0.38, 0.33) was successfully achieved.  相似文献   

11.
Ideal host-guest system for emission in phosphorescent OLEDs with only 1% guest doping condition for efficient energy transfer have been demonstrated in the present investigation. Using a narrow band-gap fluorescent host material, bis(10-hydroxybenzo[h] quinolinato)beryllium complex (Bebq2), and red dopant bis(2-phenylquinoline)(acetylacetonate)iridium (Ir(phq)2acac), highly efficient red phosphorescent OLEDs (PHOLEDs) exhibiting excellent energy transfer characteristics with a doping concentration of 1% were developed. Fabricated PHOLEDs show a driving voltage of 3.7 V, maximum current and power efficiencies of 26.53 cd/A and 29.58 lm/W, and a maximum external quantum efficiency of 21%. Minimized electron or hole trapping at the phosphorescent guest molecules and efficient Förster and Dexter energy transfers from the Bebq2 host singlet and triplet states to the emitting triplet of Ir(phq)2acac guest appear to be the key mechanism for ideal phosphorescence emission.  相似文献   

12.
By using a single host for both blue and orange phosphorescent dopants, a simple and efficient white organic light emitting-diode is reported. The dual-emissive-layer white device achieves a peak external quantum efficiency of 16.9 ± 0.9% and power efficiency of 44.1 ± 2.3 lm/W without out-coupling enhancement. Analysis of the device working mechanism determines that the blue dopant molecules can form a bridge to facilitate electron transport into the adjacent orange emitting-layer. The orange emission originates from both the direct electron trapping by the orange dopant and incomplete blue–orange energy transfer mechanisms. The origin of the voltage-dependent color shift of the device is quantitatively determined according to the working mechanism. Possible solution to reducing the color-shift is also provided based on the calculation and analytical results.  相似文献   

13.
We developed an active inter-connecting layer (ICL) composed of SnCl2Pc/Al/F16CuPc/ZnPc to achieve an effective organic tandem solar cell consisting of complementary absorbing layers. This ICL provides a new function to improve the light response of the top cell to enhance current matching between bottom cell and top cell. Meanwhile, the ICL is highly transparent and has efficient charge collections to realize electric connection in series. Finally, in the tandem cell, the open-circuit voltage of 1.52 V is obtained that is the summation of the single cells (1.08 V and 0.46 V), and the power conversion efficiency of 3.21% under 100 mW/cm2 is achieved that is higher than those of the single cells.  相似文献   

14.
Bright and efficient violet quantum dot (QD) based light-emitting diodes (QD-LEDs) with heavy-metal-free ZnSe/ZnS have been demonstrated by choosing different hole transport layers, including poly(4-butyl-phenyl-diphenyl-amine) (poly-TPD), poly[9,9-dioctylfluorene-co-N-[4-(3-methylpropyl)]-diphenylamine] (TFB), and poly-N-vinylcarbazole (PVK). Violet QD-LEDs with maximum luminance of about 930 cd/m2, the maximum current efficiency of 0.18 cd/A, and the peak EQE of 1.02% when poly-TPD was used as HTL. Higher brightness and low turn-on voltage (3.8 V) violet QD-LEDs could be fabricated when TFB was used as hole transport material. Although the maximum luminance could reach up to 2691 cd/m2, the devices exhibited only low current efficiency (∼0.51 cd/A) and EQE (∼2.88%). If PVK is used as hole transport material, highly efficient violet QD-LEDs can be fabricated with lower maximum luminance and higher turn-on voltages compared with counterpart using TFB. Therefore, TFB and PVK mixture in a certain proportion has been used as HTL, turn-on voltage, brightness, and efficiency all have been improved greatly. The QD-LEDs is fabricated with 7.39% of EQE and 2856 cd/m2 of maximum brightness with narrow FWHM less than 21 nm. These results represent significant improvements in the performance of heavy-metal-free violet QD-LEDs in terms of efficiency, brightness, and color purity.  相似文献   

15.
Using high-work-function material MoO3 as a p-type dopant, efficient single-layer hybrid organic light-emitting diodes (OLEDs) with the p–i–n homojunction structure are investigated. When MoO3 and Cs2CO3 are doped into the conventional emitting/electron-transport material tris-(8-hydroxyquinoline) aluminum (Alq3), respectively, a significant increase in p- and n-type conductivities is observed compared to that of intrinsic Alq3 thin films. With optimal doping, the hole and electron mobilities in Alq3:MoO3 and Alq3:Cs2CO3 films was estimated to be 9.76 × 10−6 and 1.26 × 10−4 cm2/V s, respectively, which is about one order of magnitude higher than that of the undoped device. The p–i–n OLEDs outperform undoped (i–i–i) and single-dopant (p–i–i and i–i–n) OLEDs; they have the lowest turn-on voltage (4.3 V at 1 cd/m2), highest maximum luminance (5860 cd/m2 at 11.4 V), and highest luminous efficiency (2.53 cd/A at 100 mA/cm2). These values are better than those for bilayer heterojunction OLEDs using the same emitting layer. The increase in conductivity can be attributed to the charge transfer process between the Alq3 host and the dopant. Due to the change of carrier concentration in the Alq3 films, the Fermi level of Alq3 is close to the highest occupied molecular orbital (HOMO) or lowest unoccupied molecular orbital (LUMO) energy levels upon p- and n-type doping, respectively, and the carrier injection efficiency can thus be enhanced because of the lower carrier injection barrier. The carriers move closer to the center energy levels of the HOMO or LUMO distributions, which increases the hopping rate for charge transport and results in an increase of charge carrier mobility. The electrons are the majority charge carriers, and both the holes and electrons can be dramatically injected in high numbers and then efficiently recombined in the p–i–n OLEDs. As a result, the improved conductivity characteristics as well as the appropriate energy levels of the doped layers result in improved electroluminescent performance of the p–i–n homojunction OLEDs.  相似文献   

16.
Highly efficient thermally activated delayed fluorescence (TADF) organic light-emitting diodes (OLEDs) based on exciplex are demonstrated in a blended system with commercially available 1,1-bis((di-4-tolylamino)phenyl)cyclohexane (TAPC) and 2,4,6-tris(biphenyl-3-yl)-1,3,5-triazine (T2T). By well adjusting the ratio between these two materials, the optimized device shows a low turn-on voltage of 2.4 V and a high external quantum efficiency (EQE) of 11.6%. More importantly, the device retains an EQE of 9.4% even at a high luminescence of 1000 cd/m2. The low efficiency roll-off is attributed to the small singlet-triplet splitting and the short of the delayed fluorescence lifetime. Both EQE and efficiency roll-off are ones of the best performance among the reported TADF OLEDs based on exciplex.  相似文献   

17.
We have studied an organic photovoltaic cell based on an efficient donor/acceptor combination of pentacene/N,N′-dioctyl-3,4,9,10-perylenedicarboximide (PTCDI-C8) heterojunctions. Photocurrent spectra exhibited excellent light harvesting throughout the visible spectrum with maximum external quantum efficiency (EQE) of ~60%. PTCDI-C8 layer provided significant contribution to the photocurrent due to its strong absorption properties and efficient exciton dissociation at pentacene/PTCDI-C8 interface. Power conversion efficiency of about 1.2% has been achieved under AM 1.5 illumination. The device showed a low series resistance of 18 Ω cm2 and a high shunt resistance of 2.5  cm2, resulting in a high fill factor of 65%.  相似文献   

18.
An optical energy loss mechanism including the surface plasmon polariton (SPP) loss, wave guide (WG) mode and substrate mode in organic light-emitting diodes (OLEDs) is introduced based on CPS theory. The theoretical calculations of both the out-coupling efficiency (OCE) and the external quantum efficiency (EQE) of OLEDs are proposed. MATLAB tools are applied to simulate the optical model and provide the results of the two efficiencies. It is demonstrated that, the OCE and the EQE in a green phosphorescence OLED with optimized device structure can reach up to 20% and 27%, respectively (intrinsic quantum efficiency q = 90% assumed). The simulation results based on the theoretical model are further validated experimentally.  相似文献   

19.
A series of two component phosphorescent organic light-emitting diodes (PHOLEDs) combing the direct hole injection into dopant strategy with a gradient doping profile were demonstrated. The dopant, host, as well as molybdenum oxide (MoO3)-modified indium tin oxide (ITO) anode were investigated. It is found that the devices ITO/MoO3 (0 or 1 nm)/fac-tris(2-phenylpyridine)iridium [Ir(ppy)3]:1,3,5-tris(N-phenylbenzimidazole-2-yl)benzene (TPBi) (30  0 wt%, 105 nm)/LiF (1 nm)/Al (100 nm) show maximum external quantum efficiency (EQE) over 20%, which are comparable to multi-layered PHOLEDs. Moreover, the systematic variation of the host from TPBi to 4,7-diphenyl-1,10-phenanthroline (Bphen), dopant from Ir(ppy)3 to bis(2-phenylpyridine)(acetylacetonate)iridium [Ir(ppy)2(acac)], and anodes between ITO and ITO/MoO3 indicates that balancing the charge as well as controlling the charge recombination zone play critical roles in the design of highly efficient two component PHOLEDs.  相似文献   

20.
《Organic Electronics》2008,9(3):285-290
The triazine compound 4,4′-bis-[2-(4,6-diphenyl-1,3,5-triazinyl)]-1,1′-biphenyl (BTB) was developed for use as an electron transport material in organic light emitting devices (OLEDs). The material demonstrates an electron mobility of ∼7.2 × 10−4 cm2 V−1 s−1 at a field of 8.00 × 105 V cm−1, which is 10-fold greater than that of the widely used material tris(8-hydroxyquinoline) aluminum (AlQ3). OLEDs with a BTB electron transport layer showed a ∼1.7–2.5 V lower driving voltage and a significantly increased efficiency, compared to those with AlQ3. These results suggest that BTB has a strong potential for use as an OLED electron transport layer material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号