首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
A systematic study of Au-promoted and unpromoted Pt/MgO/SBA-15 catalyst is developed to separate the promoter effect from electron transfer effect between Au and Pt. Multi-characterizations revealed that Au and Pt metals in these bimetallic catalysts mainly exist in the form of alloy, and the main role of Au is to reduce the size of AuPt alloy nanoparticles, thus enhancing the adsorption and activation of intermediate products. Through the optimization of various factors (including MgO content, Au/Pt molar ratio, reaction temperature and time), the Au1Pt2/MgO/SBA-15 (0.05) catalyst exhibits excellent catalytic activity and glyceric acid selectivity for the selective oxidation of glycerol. Density functional theory calculation confirmed that the synergistic effect between Pt and Au active sites could facilitate the oxidation of primary hydroxyl group by promoting the activation of C H bond and the oxidation of aldehyde group. The results may give insights on designing effective Pt based bimetallic catalyst for selective oxidation of glycerol.  相似文献   

2.
A series of carbon supported bimetallic Pt―Cu catalysts were prepared and used for glycerol oxidation with oxygen in a base-free aqueous solution. It was found that bimetallic Pt―Cu/C was more active than monometallic Pt/C towards selective oxidation of glycerol to glyceric acid. The selectivity of free glyceric acid reached 70.8% at an 86.2% conversion of glycerol over 5Pt―Cu/C. Highly dispersed bimetallic Pt―Cu nanoparticles with small particle size in dominant alloyed phase of PtCu3 were confirmed by XRD and TEM in the bimetallic Pt―Cu/C catalyst, which is proposed to contribute to the improved performance.  相似文献   

3.
阐述了采用不同方法合成了一系列的贵金属Pt单金属及多金属催化剂,研究了它们对甘油选择性催化氧化反应的催化性质。当反应温度为55℃,反应时间为8 h时,催化剂9%Pt-5%Bi/C双金属催化剂可以有效地将甘油选择性催化氧化成二羟基丙酮。  相似文献   

4.
In this work, Pt nanowire networks supported on high surface area carbon (Pt NWNs/C) are synthesized as electrocatalysts for direct methanol fuel cells (DMFCs). The electrocatalytic behavior of Pt NWNs/C catalysts for the methanol and adlayer CO oxidation reactions is investigated and the results are compared with the Pt nanoparticles (NPs) supported on carbon (Pt NPs/C). The results indicate that Pt NWNs are characterized by interconnected nanoparticles with large number of grain boundaries, downshifted d-band center and reduced oxophilicity, which results in the enhanced surface mobility of oxygen-containing species such as COads and OHads. The enhanced surface mobility of COads and OHads in turn facilitates the removal of intermediate CO species during the methanol oxidation. The activity of the Pt NWNs/C electrocatalyst for the methanol oxidation reaction and electrooxidation of adsorbed CO is also evaluated by cyclic voltammetry, CO stripping, and kinetic analysis. The results show that Pt NWNs/C catalysts have a significantly higher electrocatalytic activity for the methanol oxidation reaction as compared to Pt NPs/C catalysts. The enhanced electrocatalytic activity of Pt NWNs/C catalysts is mainly due to the existence of large number of the grain boundaries of the interconnected nanoparticles of the unique Pt NWN structure.  相似文献   

5.
Pt nanoparticles (NPs) with the average size of 3.14 nm well dispersed on N-doped carbon nanotubes (CNTs) without any pretreatment have been demonstrated. Structural properties show the characteristic N bonding within CNTs, which provide the good support for uniform distribution of Pt NPs. In electrochemical characteristics, N-doped CNTs covered with Pt NPs show superior current density due to the fact that the so-called N incorporation could give rise to the formation of preferential sites within CNTs accompanied by the low interfacial energy for immobilizing Pt NPs. Therefore, the substantially enhanced methanol oxidation activity performed by N-incorporation technique is highly promising in energy-generation applications.  相似文献   

6.
Recent experiments on the observation of collisions of single nanoparticles (NPs) with an electrode through amplification of the current by electrocatalysis are described. Systems in which the particles adhere to the electrode upon collision produce a step and staircase response, while those in which particles only interact for a short time with the electrode produce a spike or blip, with little change in the steady state current. Examples of both behaviors, e. g., Pt NPs on a Au electrode for hydrazine oxidation (staircase response) and IrOx NPs on a Pt electrode for water oxidation (blip response) are shown. Controlling the nature of the electrode surface is important in generating useful responses, for example, in the case of gold NPs on an oxidized Pt electrode for borohydride oxidation.  相似文献   

7.
阐述了甘油氧化的路径,利用Pd、Pt和Au等金属催化剂,选择性催化氧化甘油及其衍生物制备甘油酸、1,3-二羟基丙酮、羟基丙酮酸、丙醇二酸和丙酮二酸等一系列重要化学品的研究,此方法选择性高,反应温和,对环境友好,前景广阔。  相似文献   

8.
采用等量浸渍法制备了具有相似平均粒径的活性炭(AC)和碳纳米管(CNTs)负载的Pt催化剂,并比较研究了非碱性条件下两种催化剂催化甘油氧化反应的性能。结果表明,炭载体对Pt-C复合物催化甘油氧化反应的活性、选择性和稳定性有重要影响。相对于Pt/CNTs催化剂,Pt/AC催化剂中Pt 4f结合能较低,导致其表面氧的覆盖度相对较高,因而抑制了甘油的吸附,降低了甘油氧化反应的初始活性;Pt/AC催化剂会促进甘油醛进一步氧化成甘油酸以及C3产物的氧化断键;Pt/AC催化剂失活的主要原因是氧中毒和中间产物的吸附,而Pt/CNTs催化剂的失活主要是由于甘油酸的吸附堵塞Pt表面的活性位造成的。  相似文献   

9.
Antimony irreversibly adsorbed on a carbon supported platinum electrode oxidizes glycerol selectively to dihydroxyacetone with a lower onset potential (ca. 150 mV) and a higher peak current density (ca. 170 %) compared to clean Pt/C. Pb, In, and Sn also promote the catalytic activity of glycerol oxidation, however the reaction pathway towards the primary alcohol oxidation remains unchanged. Higher surface coverage by adatoms on Pt/C generally increases the activity of glycerol oxidation.  相似文献   

10.
王宝  朱明远  代斌 《工业催化》2018,26(8):12-21
对甘油选择性催化氧化转化为二羟基丙酮的研究进行综述,介绍了负载型催化剂在不同条件下对产物选择性和反应物转化率的影响,以及催化剂的作用机理。阐述了甘油催化氧化存在的问题以及发展前景。从均相到非均相催化,从单金属到双金属负载催化,从金属到非金属催化,甘油氧化反应的研究不断在完善。研究发现用Bi改性的Pt负载催化剂可以有效地将甘油选择性催化氧化为二羟基丙酮,在最优条件下,可获得较高的甘油转化率和二羟基丙酮选择性,但催化剂稳定性较差,有待进一步提高。杂多酸催化剂以及非金属催化剂也存在稳定性差的问题。指出改善催化剂的稳定性将是未来研究的主要方向。  相似文献   

11.
Nitrogen-doped multiwall carbon nanotubes (N-MWCNTs) have been synthesized by a co-pyrolysis route of iron(II) phthalocyanine (FePc) loaded and PEO20–PPO70–PEO20 retained in mesoporous silica. In this process, FePc was used as both Fe-catalyst, carbon and nitrogen sources, and P123-containing mesoporous silica was employed as both the substrate and carbon seeds/source for the growth of N-MWCNTs. The obtained samples have well-defined morphology and graphitic structure, and show high electrochemical catalytic activity and stability for oxygen reduction reaction, attributing to the highly graphitic structure and the pyridinic-type nitrogen in the N-MWCNTs. The power density of a single fuel cell using N-MWCNT as cathodic catalyst was measured to be 67.7% of that of a standard single cell using 40% Pt/C as cathodic catalyst.  相似文献   

12.
13.
Understanding of selective base‐free oxidation of glycerol to dihydroxyacetone (DHA) over Pt‐based catalysts is of paramount scientific and industrial importance. In this work, a comparative study between differently sized SbOx‐promoted and unpromoted Pt/CNTs catalysts is carried out to decouple the promoter effects from the metal size effects. The introduction of SbOx appears to enhance both the glycerol oxidation activity and the DHA selectivity, and the largely sized promoted Pt/CNTs catalysts afford a relatively high DHA yield and less C–C bond cleavage. X‐ray photoelectron spectroscopy measurements reveal that the Sb species are mainly in the form of SbOx, and the differently sized promoted catalysts show similar metal binding energies. Furthermore, theoretical studies on the promotional effects of SbOx are carried out by DFT calculations. It is found that the presence of the promoter on the catalyst surface favors the preferential activation of the secondary hydroxyl group. © 2018 American Institute of Chemical Engineers AIChE J, 64: 3979–3987, 2018  相似文献   

14.
This work presents the synthesis of platinum nanoparticles (Pt NPs) and their subsequent deposition on the nitrogen-doped carbon nanotubes, which have been directly grown on a carbon cloth (CNT-CC electrode). The CNT-CC electrode provides a fast electron-transfer path to the carbon cloth, resulting in energy-loss reduction and enhancing catalytic activity of Pt NPs. The N-dopants in CNT serve as the defect sites to enhance nucleation of Pt particles. The reduction of the Pt precursor salt was carried out in the ethylene glycol solution at an elevated temperature. In order to control the Pt NP size, the pH of the reaction solution was controlled by the addition of NaOH. Zeta potential measurements of the as-prepared sample indicate that a higher zeta potential results in a smaller particle size, due to a stronger electrostatic repulsion between NPs. This serves a powerful tool for size control of the Pt nanoparticle. The Pt NPs dispersed on the CNT-CC have an average size of 2.81 nm (Pt/CNT-CC) prepared using 15 mM NaOH, with high uniformity under electron microscopy. Cyclic voltammetry measurements of the electrocatalytic activity of the Pt/CNT-CC for methanol oxidation indicate that it exhibits excellent electrocatalytic activity and are ideal for direct methanol fuel cell applications.  相似文献   

15.
An epitaxial TiC/nanodiamond (ND) was used as novel support for Pt electrocatalysts to improve its durability in fuel cells. The TiC/ND was fabricated by a simple one-pot synthesis method. TiC/ND-supported Pt electrocatalysts were synthesized using a microwave-assisted ethylene glycol method. Pt nanoparticles (NPs) with a mean size of 4.4 nm were highly dispersed on the TiC/ND’s surface. The Pt/TiC/ND catalyst exhibited much higher electrocatalytic activity and stability in methanol oxidation reactions and oxygen reduction reactions than the Pt/ND catalyst. The electrochemical stability of the Pt/TiC/ND catalyst is more outstanding compared with the conventional carbon black supported Pt catalysts. The superior durability can be attributed to the chemical stability of ND core and the anchoring effect of the TiC layer to Pt NPs.  相似文献   

16.
The electrical contacting of redox enzymes with electrodes is the most fundamental requirement for the development of amperometric biosensors and biofuel cell elements. We describe a novel method to prepare electrically contacted metallic nanoparticles (NPs) or carbon nanotubes (CNTs)/enzyme hybrid composites on electrodes that act as amperometric biosensors or as the constituents of biofuel cells. Au NPs or Pt NPs were modified with thioaniline electropolymerizable groups, and so were the enzymes glucose oxidase (GOx) or bilirubin oxidase (BOD). Electrochemical polymerization of the thioaniline-functionalized Pt NPs and GOx on a thioaniline monolayer-modified Au surface led to the formation of a bis-aniline-bridged Pt NPs/GOx composite electrode that enabled the analysis of glucose through the electrocatalyzed reduction of H2O2. Similarly, a Pt NPs/BOD composite-functionalized electrode showed electrocatalytic activity toward the reduction of O2 to H2O. Also, a Au NPs/GOx composite-functionalized electrode revealed direct electrical contacting between the enzyme and the electrode through the electrocatalytic reduction of the bis-aniline bridges, and this enabled the bioelectrocatalytic oxidation and the amperometric sensing of glucose. Finally, a biofuel cell consisting of an anode modified with Nile blue/NAD+/alcohol dehydrogenase on carbon nanotubes, and a cathode composed of the bis-aniline-crosslinked Pt NPs/BOD composite was constructed. The biofuel cell operates with a power output corresponding to 200 μW cm-2.  相似文献   

17.
Highly dispersed platinum nanoparticles (NPs) were fabricated on the surface of few-layered reduced graphene oxide (Pt/RGO) via direct ethylene glycol reduction of PtCl62  in aqueous solution. This well-defined Pt/RGO catalyst was highly selective and active for the hydrogenation of cinnamaldehyde (CAL) to corresponding cinnamyl alcohol (COL) under mild conditions. It was found that the selectivity of COL remained 85.3% at 97.8% CAL conversion in ethanol. These results could be ascribed to the well dispersed Pt NPs on RGO sheets, well dispersion of Pt/RGO in ethanol and ethanol can inhibit the generation of acetals.  相似文献   

18.
Graphene nanosheets (GS) were formed by the thermal‐expansion method. Large micropores about 1–2 nm were produced, which might provide abundant anchor sites for fixing catalyst. Platinum nanoparticles (NPs) supported on exfoliated GS (Pt/GS) were synthesized through an improved impregnation approach and mixture gas (5% H2 in N2) reduction. SEM and TEM images indicated the simple and clean method can effectively synthesize Pt with uniform dispersion and small size (below 3 nm) on the 2D specific and stratiform GS. The different amounts of Pt loaded on carbon carriers have been investigated respectively to evaluate the preferable electrocatalyst. Experimental results showed that Pt/GS of 20 wt.% initiated CO oxidation at the lowest onset potential in comparison with the commercial Pt/C (JM), indicating a higher CO tolerance of Pt/GS catalysts. In addition, Pt/GS of 20 wt.% exhibited enhanced electrocatalytic activity and high durability towards methanol oxidation. The high performance is exclusively attributed to synergistic effects of exfoliated GS and ultrafine size Pt NPs. Combining a melt‐diffusion strategy with the effective reduction of Pt precursors by the hydrogen gas, this present method is easy to scale up and possesses a significant potential for synthesizing anode electro‐catalyst of direct methanol fuel cells.  相似文献   

19.
The effect of the addition of CeO2 to Pt/C catalysts on electrochemical oxidation of alcohols (methanol, ethanol, glycerol, ethylene glycol) was studied in alkaline solution. The ratios of Pt to CeO2 in the catalysts were optimised to give the better performance. The electrochemical measurements revealed that the addition of CeO2 into Pt-CeO2/C catalysts could significantly improve the electrode performance for alcohols oxidation, in terms of the reaction activity and the poisoning resistance, due to the synergistic effect. The electrode with the weight ratio of Pt to CeO2 equals 1.3:1 with platinum loading of 0.30 mg/cm2 showed the highest catalytic activity for oxidation of ethanol, glycerol and ethylene glycol.  相似文献   

20.
采用水热合成法制备磷酸铝分子筛AlPO-5,并通过焙烧处理得到AlPO-5分子筛多孔材料,以浸渍法和沉淀法分别制备了Pt负载型AlPO-5催化剂,通过粉末XRD、TEM、氮气吸附-脱附等手段对制备的催化剂进行了对比表征,研究了负载方法对Pt团簇分散度以及粒径尺寸的影响。以Pt/AlPO-5作为催化剂,研究了其对甘油的催化氧化性能,系统考察了Pt负载量、还原方法和反应时间对甘油转化率和产物选择性的影响。实验结果表明,由浸渍法制备的催化剂对甘油的转化率和甘油醛的选择性较高,甘油醛的选择性最高可达到63.46%。甘油醛作为起始反应产物,其高选择性与较大尺寸的Pt纳米团簇有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号