共查询到19条相似文献,搜索用时 62 毫秒
1.
针对目前锂电池组健康状态估计方法的不足,提出一种基于信息熵与粒子群算法(Particle swarm optimization, PSO)优化长短时记忆神经网络(Long short-term memory neural network, LSTM)的锂电池组健康状态估计方法。基于锂电池组恒流-恒压充电阶段锂电池组内各单体端电压的信息熵和平均温度信息,应用PSO-LSTM方法提取锂电池组电压熵、平均温度和锂电池组健康状态之间的映射关系,从而建立锂电池组健康状态估计模型。应用试验室测量的锂电池组老化数据对提出的方法进行测试。测试结果表明,该方法能够准确估计锂电池组的健康状态,平均估计误差在1%以内。同时,为验证提出的方法可推广至锂电池单体,利用美国航天航空局测得的锂电池加速老化数据再次测试,平均估计误差在0.7%以内。并针对锂电池组与锂电池单体设计对比试验,进一步验证提出的方法具有良好的估计性能。 相似文献
2.
针对刀具磨损在线监测过程中信号特征较弱、外界噪声干扰较大导致的预测准确度较差问题,提出了一种基于贝叶斯优化(BO)双向长短时记忆网络(Bi-LSTM)的刀具磨损状态监测模型。结合斯皮尔曼相关系数和最大互相关系数来筛选降噪后切削力信号的时域、频域及时频域特征,输入到建立好的Bi-LSTM模型进行训练;针对Bi-LSTM模型参数组合对精度影响大且难以选择的问题,采用贝叶斯优化算法进行超参数寻优;利用铣削加工实验对模型进行验证。结果表明,该方法能快速得到模型最优超参数,同时兼具稳定性和准确性,与其他深度学习模型相比,准确率更高,实验证明了该模型的有效性和可行性。 相似文献
3.
自动化切削加工过程中,准确可靠地监测刀具磨损状态是保证加工质量和加工效率的关键。针对刀具磨损状态相关特征提取繁琐、准确率低及传统的深度学习网络不能全面提取数据隐含信息等问题,提出了一种以卷积神经网络(CNN)和双向长短时记忆(BiLSTM)网络集成模型为基础并通过在卷积神经网络中添加批量标准化层和采用两个双向长短时记忆网络层的改进模型,该模型通过自动提取小波阈值降噪等预处理和降采样后的切削力、振动和声音信号的空间和时序特征来实现刀具磨损状态监测。将改进模型与CNN-BiLSTM模型及传统的深度学习模型进行对比,发现改进模型在精度和稳定性方面有较大提升。所提方法为准确监测自动化加工过程中刀具磨损状态、提高生产效率和加工质量提供了技术支持。 相似文献
4.
采用传统概率神经网络模型检测机械传动齿轮箱振动需要人工经验确定平滑因子,不仅检测精度难以保证,而且延长了算法的运行时间,为此,采用改进的粒子群算法自适应地确定平滑因子参数。以机械传动齿轮箱作为非正常振动检测研究的对象,首先,采集齿轮箱运行的振动时域信号与频域信号,作为振动类型检测的数据样本;其次,基于Parzen窗概率密度估计构建概率神经网络模型;然后,利用变异算子优化粒子群算法的惯性权重,定义2个质心参数引导粒子群搜索到最优方向;最后,采用改进的粒子群算法自适应地确定概率神经网络的平滑因子,解决网络分类易陷入局部最优解问题。经实际样本数据测试得知,优化后算法的检测结果更加接近机械传动齿轮箱振动检测期望值,检测齿轮箱非正常振动的精度较高,满足了机械振动的高标准检测需求,实际应用价值较高。 相似文献
5.
针对齿轮箱故障诊断缺乏有效的快速算法的问题,提出了基于近似熵(Approximate Entropy,ApEn)参数的齿轮箱故障诊断方法。首先介绍了近似熵的概念和计算方法,然后利用近似熵对轻度磨损、中度磨损和断齿故障状态下的齿轮箱进行故障诊断。结果表明,近似熵参数不但能有效地对齿轮箱的故障状态进行区分,而且可以清楚地刻画齿轮箱故障状态的演变过程,因而适于作为齿轮箱故障诊断的特征参数。为齿轮箱的状态监测与故障诊断提供了一种新的方法。 相似文献
6.
为了提高机械加工过程中刀具磨损在线监测的准确性,提出了一种基于长短时记忆卷积神经网络(LSTM-CNN)的刀具磨损在线监测模型。在该监测模型中,通过振动、力、声发射传感器对刀具切削过程中的振动、力和声发射信号进行采集,采集的数据其本质为时间序列数据。考虑采集数据的序列和多维度特性,采用LSTM-CNN网络对采集的数据进行序列和多维度特征提取,利用线性回归实现特征到刀具磨损值的映射。通过实验验证了该模型的有效性和可行性,模型的精度较其他几种方法有了较大的提高。 相似文献
7.
准确可靠地对刀具磨损状态进行监测和识别,有助于保证加工质量和加工效率。为提高刀具磨损状态识别精度,提出一种优化双向长短时记忆网络(NGO-BiLSTM)的刀具磨损状态识别新方法。NGO-BiLSTM核心思想就是通过北方苍鹰优化算法(NGO)对BiLSTM网络超参数进行自适应优化选取,从而解决BiLSTM网络超参数取值不同导致识别结果不稳定这一问题,进而提高BiLSTM的识别性能。通过刀具磨损状态识别实例对所提方法的有效性进行验证,结果表明:所提方法提高了识别精度,在5种评价指标上也是优于其它几种方法。 相似文献
8.
9.
10.
镗削加工是机械加工领域中非常重要的一种加工手段,被广泛应用于大型零件的深孔加工过程中。但由于镗削加工的切削区域位于深孔内部,所以机床操作者难以对刀具状态做出准确的判别。针对这一问题,提出了基于深度长短时记忆(Long Short-Term Memory,LSTM)网络的镗削刀具状态监测方法。通过对镗削过程的振动和声音信号采集,利用振动和声音信号的频域数据训练深度长短时记忆网络,建立了振动和声音信号与镗削刀具状态的映射模型。在深孔镗床上进行了模型测试试验。试验表明:深度长短时记忆网络模型对刀具状态有着较好的预测准确度。 相似文献
11.
Shuangwen Sheng 《摩擦学汇刊》2016,59(1):149-162
Despite the wind industry's dramatic development during the past decade, it is still challenged by premature turbine subsystem/component failures, especially for turbines rated above 1 MW. Because a crane is needed for each replacement, gearboxes have been a focal point for improvement in reliability and availability. Condition monitoring (CM) is a technique that can help improve these factors, leading to reduced turbine operation and maintenance costs and, subsequently, lower cost of energy for wind power. Although technical benefits of CM for the wind industry are normally recognized, there is a lack of published information on the advantages and limitations of each CM technique confirmed by objective data from full-scale tests. This article presents first-hand oil and wear debris analysis results obtained through tests that were based on full-scale wind turbine gearboxes rated at 750 kW. The tests were conducted at the 2.5-MW dynamometer test facility at the National Wind Technology Center at the National Renewable Energy Laboratory. The gearboxes were tested in three conditions: run-in, healthy, and damaged. The investigated CM techniques include real-time oil condition and wear debris monitoring, both inline and online sensors, and offline oil sample and wear debris analysis, both onsite and offsite laboratories. The reported results and observations help increase wind industry awareness of the benefits and limitations of oil and debris analysis technologies and highlight the challenges in these technologies and other tribological fields for the Society of Tribologists and Lubrication Engineers and other organizations to help address, leading to extended gearbox service life. 相似文献
12.
13.
自动驾驶等级的逐级提升意味着驾驶执行权从驾驶人向车辆自动控制系统逐渐转移,驾驶人所承担的责任也随之发生变化。大量研究表明,自动驾驶车辆驾驶人的注意力跨度与行驶安全性密切相关,且不同等级自动驾驶所要求的驾驶人状态阈值存在差异。提出一种融合长短记忆(Long short term memory,LSTM)网络和驾驶人状态判别机制的驾驶人负荷状态预测模型(long short term memory network driver state prediction model,LSTM-DSDM),实现驾驶人负荷状态的预测及其状态转变阶段的识别,并基于不同自动驾驶等级下驾驶人的任务要求,提出了“低等级识别,高等级预测”的驾驶人负荷状态监测策略。试验结果表明本研究搭建的驾驶员负荷状态预测模型在低自动驾驶等级情况下的负荷识别率可达90%以上;在高自动驾驶等级情况下实现可靠的负荷预测和驾驶人负荷状态过渡阶段的辨识,有效应对不同自动驾驶等级驾驶人负荷状态的监测需求。 相似文献
14.
智能化滚动轴承状态监测利用传感器进行振动信号采集,将采集的数据形成样本;在MATLAB程序中导入采集的数据样本,进行时域分析与频域分析,并且提取时域和频域的特征向量,形成训练神经网络的模式;再将数据输入人工神经网络进行训练,可以建立一个识别系统判断轴承是否有故障。 相似文献
15.
油液在线监测系统中磨粒识别技术研究 总被引:1,自引:0,他引:1
针对磨损状态监测要求,构建了基于显微图像分析的油液在线监测系统。根据系统光路特点,对磨粒图像进行了基于彩色特征的转换,并通过与背景图像的差值处理来快速提取磨粒目标。基于最小二乘支持向量机设计了磨粒两类分类器,并利用粒子群优化算法对最小二乘支持向量机模型中的参数进行了优化选取;根据磨粒识别体系,设计了基于最小二乘支持向量机的磨粒综合分类器。最后,利用铁谱分析技术对系统性能和识别效果进行了检验,结果表明本系统具有较高的检测精度和识别效果。 相似文献
16.
针对机车齿轮箱检测获取的多源信号具有数据量大、相关性低和可靠性差等问题,提出一种新型智能优化算法为多元函数粒子群优化算法。研究了粒子种群的异众比率和适应度对惯性权重的影响,在传统粒子群算法的基础上提高了算法的收敛速度及效率,以正则化模态差的适应度函数作为测点数量的评价指标,根据齿轮箱模态振型分析,实现了齿轮箱的多传感器检测优化。以齿轮断齿故障为试验对象,通过与传统检测方法比较分析,准确获取了齿轮箱输入轴转频39.5 Hz,第三级啮合频率90.5 Hz以及2~5倍频成分,快速识别了故障齿轮的位置。实验结果表明了该方法能够增强结构参数的识别率,有效提高了故障诊断的准确性,同时为机车故障预警和安全服役提供了关键技术基础。 相似文献
17.
论述了人工神经网络的缺陷研究所面临的困难。提出了自构形神经网络的概念,阐明了构造自构形神经网络的必要性,构造了自构形神经网络的学习算法,并探讨了它在刀具智能监控系统中的应用。 相似文献
18.