首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Light-emitting field effect transistors (LEFETs) are a class of organic optoelectronic device capable of simultaneously delivering the electrical switching characteristics of a transistor and the light emission of a diode. We report on the temperature dependence of the charge transport and emissive properties in a model organic heterostructure LEFET system from 300 K to 135 K. We study parameters such as carrier mobility, brightness, and external quantum efficiency (EQE), and observe clear thermally activated behaviour for transport and injection. Overall, the EQE increases with decreasing temperature and conversely the brightness decreases. These contrary effects can be explained by a higher recombination efficiency occurring at lower temperatures, and this insight delivers new knowledge concerning the optimisation of both the transport and emissive properties in LEFETs.  相似文献   

2.
Ambipolar light‐emitting organic field‐effect transistors (LEFETs) possess the ability to efficiently emit light due to charge recombination in the channel. Since the emission can be made to occur far from the metal electrodes, the LEFET structure has been proposed as a potential architecture for electrically pumped organic lasers. Here, a rib waveguide distributed feedback structure consisting of tantalum pentoxide (Ta2O5) integrated within the channel of a top gate/bottom contact LEFET based on poly(9,9‐dioctylfluorene‐alt‐benzothiadiazole) (F8BT) is demonstrated. The emitted light is coupled efficiently into the resonant mode of the DFB waveguide when the recombination zone of the LEFET is placed directly above the waveguide ridge. This architecture provides strong mode confinement in two dimensions. Mode simulations are used to optimize the dielectric thickness and gate electrode material. It is shown that electrode absorption losses within the device can be eliminated and that the lasing threshold for optical pumping of the LEFET structure with all electrodes (4.5 µJ cm?2) is as low as that of reference devices without electrodes. These results enable quantitative judgement of the prospects for realizing an electrically pumped organic laser based on ambipolar LEFETs. The proposed device provides a powerful, low‐loss architecture for integrating high‐performance ambipolar organic semiconductor materials into electrically pumped lasing structures.  相似文献   

3.
Owing to their low cost, easy processing, and the possibility of flexible fabrication, polymer light-emitting diodes (PLEDs) are emerging as an important class of materials. Despite promising characteristics, the relatively easy ionization of the well-known low-work-function cathodes such as Ca and Ba prevents the full usage of these materials. Herein, we report the syntheses of three alcohol-soluble conjugated polymers with different conjugation lengths and electron affinities as electron injection and transport materials for PLEDs: poly[9,9-bis(2-dihexylaminoethoxy)fluorene-co-tetrafluorobenzene] (PFOH-1), poly[9,9-bis(2-dihexylaminoethoxy)fluorene-co-thiophene] (PFOH-2), and poly[9,9-bis(2-dihexylaminoethoxy)fluorene-co-benzo-thiadiazole] (PFOH-3). For comparison, devices using Al, Ca, and Al cathodes were also fabricated. The device based on the Al cathode showed lower performance with a luminescence efficiency of 0.93 cd/A and a luminance of 248 cd/m2; that based on the low-work-function metal Ca as the cathode showed a near-threefold increase in luminescence efficiency at 2.51 cd/A and brightness at 856 cd/m2 owing to greatly enhanced electron injection from the cathode; and the device employing the PFOH-3/Al cathode exhibited a luminescence efficiency of 2.35 cd/A and a brightness of 667 cd/m2 at a current density of 35 mA/cm2, which is comparable with the performance of the device with the Ca cathode.  相似文献   

4.
We present a voltage programmable polymer light emitting field-effect transistor (LEFET), consisting of a green emitting polymer (F8BT), and a ferroelectric polymer, P(VDF-TrFE), as the gate dielectric. We show by both experimental observations and numerical modeling that, when the ferroelectric gate dielectric is polarized in opposite directions at the drain and source sides of the channel, respectively, both electron and hole currents are enhanced, resulting in more charge recombination and ~10 times higher light emission in a ferroelectric LEFET, compared to the device with non-ferroelectric gate. As a result of the ferroelectric poling, our ferroelectric LEFETs exhibit repeated programmability in light emission, and an external quantum efficiency (EQE) of up to 1.06%. Numerical modeling reveals that the remnant polarization charge of the ferroelectric layer tends to ‘pin’ the position of the recombination zone, paving the way to integrate specific optical out-coupling structures in the channel of these devices to further increase the brightness.  相似文献   

5.
《Organic Electronics》2007,8(1):29-36
Efficient fluorescent white organic light-emitting diodes are fabricated with the use of an efficient electro-fluorescence blue-green host material di(4-fluorophenyl)amino-di(styryl)biphenyl, doped with red dye 4-(dicyano-methylene)-2-methyl-6-(julolidin-4-yl-vinyl)-4H-pyran. One resulting two-wavelength white emission device shows a maximum external quantum efficiency of 4.8% and a high power efficiency of 14.8 lm/W with 100 cd/m2 at 3.8 V. The high efficiency may be attributed to the high electroluminescence character of the host, relatively high host-to-guest energy transfer efficiency, and effective device architecture.  相似文献   

6.
《Organic Electronics》2008,9(3):310-316
We demonstrate a polymer non-field-effect transistor in a vertical architecture with an Al grid embedded in a polymer sandwiched between another two electrodes. The Al grid containing high density of self-assembled submicron openings is fabricated by a non-lithography method. This device modulates the space-charge-limited current of a unipolar polymer diode with the Al grid. The operating voltage of the device is as low as 4 V, the on/off ratio is higher than one hundred, and the current gain is 104. The current density is higher than 1 mA/cm2.  相似文献   

7.
《Organic Electronics》2014,15(1):57-64
Diphenylamino- and triazole-endcapped fluorene derivatives which show a wide energy band gap, a high fluorescence quantum yield and high stability have been synthesized and characterized. Single-layer electroluminescent devices of these fluorene derivatives exhibited efficient deep blue to greenish blue emission at low driving voltage. The single-layer OLED of PhN-OF(1)-TAZ shows a maximum current efficiency of 1.54 cd/A at 20 mA cm−2 with external quantum efficiency (EQE) of 2.0% and CIE coordinates of (0.153, 0.088) in deep blue region, while the single-layer device of oligothienylfluorene PhN-OFOT-TAZ shows a maximum brightness of 7524 cd/m2 and a maximum current efficiency of 2.9 cd/A with CIE coordinates of (0.20, 0.40) in greenish blue.  相似文献   

8.
《Organic Electronics》2007,8(4):349-356
The new amorphous molecular material, 2,5-bis(4-triphenylsilanyl-phenyl)-[1,3,4]oxadiazole, that functions as good hole blocker as well as electron transporting layer in the phosphorescent devices. The obtained material forms homogeneous and stable amorphous film. The new synthesized showed the reversible cathodic reduction for hole blocking material and the low reduction potential for electron transporting material in organic electroluminescent (EL) devices. The fabricated devices exhibited high performance with high current efficiency and power efficiency of 45 cd/A and 17.7 lm/W in 10 mA/cm2, which is superior to the result of the device using BAlq (current efficiency: 31.5 cd/A and power efficiency: 13.5 lm/W in 10 mA/cm2) as well-known hole blocker. The ITO/DNTPD/α-NPD/6% Ir(ppy)3 doped CBP/2,5-bis(4-triphenylsilanyl-phenyl)-[1,3,4]oxadiazole as both hole blocking and electron transporting layer/Al device showed efficiency of 45 cd/A and maximum brightness of 3000 cd/m2 in 10 mA/cm2.  相似文献   

9.
Low color temperature (CT) lighting provides a warm and comfortable atmosphere and shows mild effect on melatonin suppression. A high-efficiency low CT organic light emitting diode can be easily fabricated by spin coating a single white emission layer. The resultant white device shows an external quantum efficiency (EQE) of 22.8% (34.9 lm/W) with CT 2860 K at 100 cd/m2, while is shown 18.8% (24.5 lm/W) at 1000 cd/m2. The high efficiency may be attributed to the use of electroluminescence efficient materials and the ambipolar-transport host. Besides, proper device architecture design enables excitons to form on the host and allows effective energy transfer from host to guest or from high triplet guest to low counterparts. By decreasing the doping concentration of blue dye in the white emission layer, the device exhibited an orange emission with a CT of 2280 K. An EQE improvement was observed for the device, whose EQE was 27.4% (38.8 lm/W) at 100 cd/m2 and 20.4% (24.6 lm/W) at 1000 cd/m2.  相似文献   

10.
We report efficient blue electrophosphorescent polymer light emitting devices with polyfluorene (PFO) as the host and iridium bis[2-(4,6-difluorophenyl)-pyridinato-N,C2] picolinate (FIrpic) as the dopant. Despite the low-lying triplet energy level of the polyfluorene polymer host, phosphorescent quenching can be suppressed by using poly(N-vinylcarbazole) (PVK) as anode buffer layer, resulting in a high luminous efficiency of 26.4 cd A?1, which is one of the best results in the literature based on conjugated polymer reported to date. The reduced phosphorescent quenching is found to be associated with the exciton formation and charge carrier recombination within the PVK layer and the PVK/PFO interface due to the accumulation of holes. As compared with the devices based on non-conjugated host polymer PVK, the devices based on PFO showed a lower turn-on voltage (3.6 V vs. 4.4 V) and higher power efficiency (17 lm W?1 vs. 8.3 lm W?1) due to the higher mobility of PFO. When doubly doped with a newly synthesized yellow-emitting metallophosphor, white polymer light-emitting devices with superior device performance (a peak device efficiency of 40.9 cd A?1, a CIE coordinates of (0.32, 0.48), and a power efficiency of 31.4 lm W?1) was achieved. These findings can broaden our selection in polymer hosts for highly efficient phosphorescent blue emitting devices and can find potential applications in full color displays and solid-state lighting applications in the future.  相似文献   

11.
A new donor–acceptor (D?A) copolymer (PIPY–DTBTA) containing 6,12-dihydro-diindeno[1,2-b;1′,2′-e]pyrazine donor and benzotriazole acceptor was synthesized and characterized for multifunctional applications in organic field-effect transistors (OFETs), polymer solar cells (PSCs) and polymer light-emitting diodes (PLEDs). The polymer exhibits high molecular weights, excellent film-forming ability, a deep HOMO energy level, and good solution processability. Solution-processed thin film OFETs based on this polymer revealed good p-type characteristic with a high hole mobility up to 0.0521 cm2 V?1 s?1. Bulk-heterojunction PSCs comprising this polymer and PC61BM gave a power conversion efficiency (PCE) of 0.77%. The single-layer PLEDs based on PIPY–DTBTA emitted a yellow–red light with a maximum brightness of 385 cd m?2 at the turn-on voltage of 6 V.  相似文献   

12.
Chlorinated-Indium Tin Oxide (Cl-ITO) has been found to have higher work function than the pristine ITO. When used as anode for polymer light-emitting diodes (PLEDs) with deep blue emitting β-phase poly(9,9-di-n-octylfluorene) (β-PFO) as the emitting layer, it allows hole injection without barrier. However, the presence of chlorine free radical on the surface of Cl-ITO leads to an exciton quenching effect. The surface modification on anode by dipping into 1% ammonium (NH4OH) aqueous solution to remove free chlorine radicals on surface can enhance device performance significantly. The single layer device Cl-ITO (treated)/β-PFO/CsF/Al gives the maximum brightness 16773 cd/m2 and maximum luminance efficiency 2.40 cd/A, which are higher than those with untreated Cl-ITO, (2519; 0.27) and CFx treated ITO, (7800; 1.8) and PEDOT:PSS coated ITO, (12884; 1.43). The ease of the present anode treatment allows the one-layer-only device to be a promising candidate for practical application.  相似文献   

13.
《Organic Electronics》2014,15(4):926-936
A highly efficient hybrid white organic light-emitting diode based on a simple structure has been successfully fabricated and characterized. By systematically investigating the influence of the emissive layer thickness, electron transporting layer thickness, spacer and hole transporting layer, the forward-viewing current efficiency and power efficiency of the resulting device without any out-coupling schemes or n-doping strategies can be as high as 59.4 cd/A and 58.4 lm/W, respectively. Besides, a Commission International de l’Eclairage of (0.412, 0.393) and a color rendering index of 60 are obtained at the current density of 11 mA/cm2. Through the optimization and investigation, the origin of this unique device is explored comprehensively. Undoubtedly, such presented results will be beneficial to the design of both material and device architecture for ultra high-performance white organic light-emitting diodes.  相似文献   

14.
In this paper, we described a new category of solution processable small molecule organic light emitting materials, the pyrene functioned diarylfluorenes: 2PE-PPF and DPE-PPF. They emit blue light in solution and green light in film, and show high thermal stability with the 5% weight loss temperature (Td) over 400 °C. The glass transition temperature (Tg) for 2PE-PPF and DPE-PPF is 102 °C and 147 °C, respectively. These molecules are interesting molecular glass and they have good film forming abilities. Smooth and uniform film could be obtained by spin-coating. This character enables them able to be used in solution processed OLEDs by spin-coating or jet-printing. Single layered device using 2PE-PPF as the active material shows a turn-on voltage of 3.2 V, brightness over 8000 cd/m2 and current efficiency up to 2.55 cd/A. Double layered device by inserting TPBI as the hole-blocking electron-transporting layer increases the maximum efficiency to 5.83 cd/A.  相似文献   

15.
Bright and efficient violet quantum dot (QD) based light-emitting diodes (QD-LEDs) with heavy-metal-free ZnSe/ZnS have been demonstrated by choosing different hole transport layers, including poly(4-butyl-phenyl-diphenyl-amine) (poly-TPD), poly[9,9-dioctylfluorene-co-N-[4-(3-methylpropyl)]-diphenylamine] (TFB), and poly-N-vinylcarbazole (PVK). Violet QD-LEDs with maximum luminance of about 930 cd/m2, the maximum current efficiency of 0.18 cd/A, and the peak EQE of 1.02% when poly-TPD was used as HTL. Higher brightness and low turn-on voltage (3.8 V) violet QD-LEDs could be fabricated when TFB was used as hole transport material. Although the maximum luminance could reach up to 2691 cd/m2, the devices exhibited only low current efficiency (∼0.51 cd/A) and EQE (∼2.88%). If PVK is used as hole transport material, highly efficient violet QD-LEDs can be fabricated with lower maximum luminance and higher turn-on voltages compared with counterpart using TFB. Therefore, TFB and PVK mixture in a certain proportion has been used as HTL, turn-on voltage, brightness, and efficiency all have been improved greatly. The QD-LEDs is fabricated with 7.39% of EQE and 2856 cd/m2 of maximum brightness with narrow FWHM less than 21 nm. These results represent significant improvements in the performance of heavy-metal-free violet QD-LEDs in terms of efficiency, brightness, and color purity.  相似文献   

16.
《Organic Electronics》2007,8(6):735-742
Efficient fluorescent white organic light-emitting diodes with low carrier-injection barriers were fabricated with device structure of indium tin oxide/N,N′-bis-(1-naphthy)-N,N′-diphenyl-1,1′-biphenyl-4-4′-diamine/white emission layer/1,3,5-tris(N-phenyl-benzimidazol-2-yl)benzene/lithium fluoride/aluminium. By blending in the blue host of 1-butyl-9,10-naphthalene-anthracene in the emissive layer an efficient electro-luminescent greenish-blue co-host of di(triphenyl-amine)-1,4-divinyl-naphthalene, with the doping of a trace amount of red dye of 4-(dicyano-methylene)-2-methyl-6-(julolidin-4-yl-vinyl)-4H-pyran, bright and colour-stable white emission with high power-efficiency of 14.6 lm/W at 100 cd/m2 or current efficiency of 19.2 cd/A at 300 cd/m2 or 18.7 cd/A at 10,000 cd/m2 was obtained. The resulted synergistic increase in brightness and efficiency may be attributed to the presence of cascading new routes with comparatively lower electron injection barrier.  相似文献   

17.
In this report, we explore the optoelectronic properties of a low band-gap copolymer based on the alternation of electron rich (thiophene and thienothiophene units) and electron deficient units (pyridal[2,1,3]thiadiazole (Py)). Initial density functional theory calculations point out the interest of using the Py unit to optimize the polymer frontier orbital energy levels. A high molecular weight (Mn = 49 kg/mol) solution-processable copolymer, based on Py, thiophene and thienothiophene units, has been synthesized successfully. From cyclic-voltammetry and UV–visible absorption measurements a relatively deep HOMO level (−5.1 eV) and an optical band-gap (1.48 eV) have been estimated. Charge transport both in horizontal and vertical directions were extracted from field-effect transistors and space charge limited current diodes, respectively, and led to a relatively high in-plane hole mobility in pure polymer films (0.7 × 10−2 cm2 V−1 s−1). GIWAXS results showed almost identical in-plane lamellar morphologies, with similar average size and orientation of the polymer crystalline domains in both, pure polymer films and polymer:fullerene blends. Also, the gate-voltage dependence of the field-effect mobility revealed that the energy disorder in the polymer domains was not altered by the introduction of fullerenes. The nevertheless significantly higher out-of-plane hole mobility in blends, in comparison to pure polymer films, was attributed to the minor amorphous polymer phase, presumably localized close to the donor/acceptor interface, whose signature was observed by UV–vis absorption. Promising photovoltaic performances could be achieved in a standard device configuration. The corresponding power conversion efficiency of 4.5% is above the value achieved previously with a comparable polymer using benzo [2,1,3]thiadiazole instead of Py as acceptor unit.  相似文献   

18.
《Organic Electronics》2008,9(2):273-278
The authors demonstrate a fluorescent white organic light-emitting device (WOLED) with double emissive layers. The yellow and blue dyes, 5,6,11,12-tetraphenylnaphthacene and N-(4-((E)-2-(6-((E)-4-(diphenylamino)styryl)naphthalen-2-yl)vinyl)phenyl)-N-phenylbenzenamine, are doping into the same conductive host material, N,N′-dicarbazolyl-4-4′-biphenyl). The maximum luminance and power efficiency of the WOLED are 14.6 cd/A and 9.5 lm/W at 0.01 mA/cm2, with the maximum brightness of 20 100 cd/m2 at 17.8 V. The Commission International de L’Éclairage coordinates change slightly from (0.27, 0.37) to (0.28, 0.36), as the applied voltage increases from 6 V to 16 V. The high efficiencies can be attributed to the balance between holes and electrons.  相似文献   

19.
《Organic Electronics》2007,8(4):343-348
By introducing CFx thin film as hole injection layer on top of indium tin oxide (ITO) anode via plasma polymerization of CHF3, the device with poly(9,9-dioctylfluorene) (PFO) as emitting layer, ITO/CFx(35 W)/PFO/CsF/Ca/Al, is prepared. At the optimal C/F atom ratio using the radio frequency power 35 W, the device performance is optimal having the maximum current efficiency 3.1 cd/A and maximum brightness 8400 cd/m2. This is attributed to a better balance between hole and electron fluxes, resulting from a decrease in hole injection barrier as manifested by ultraviolet photoelectron spectroscopy and scanning surface potential microscopy.  相似文献   

20.
We demonstrate highly efficient white emission polymer light-emitting diodes (WPLEDs) from multilayer structure formed by solution processed technique, in which alcohol/water-soluble polymer, poly [(9,9-bis(3′-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN) was incorporated as electron-injection layer and Al as cathode. It was found that the device performance was very sensitive to the solvents from solution of which the PFN electron-injection layer was cast. Devices with electron-injection layer cast from methanol solution show degraded performance while the best device performance was obtained when mixed solvent of water and methanol with ratio of 1:3 was used. We attribute the variation in device performance to washing out the electron transport material in the emissive layer due to rinse effect. As a result of alleviative loss of electron transport material in the emissive layer, the optimized device with a peak luminous efficiency of 18.5 cd A?1 for forward-viewing was achieved, which is comparable to that of the device with same emissive layer but with low work-function metal Ba cathode (16.6 cd A?1). White emission color with Commission International de I’Eclairage coordinates of (0.321, 0.345) at current 10 mA cm?2 was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号