首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
低碳钢搅拌摩擦焊用摩擦头的失效研究   总被引:2,自引:0,他引:2  
选用YG8硬质合金作为摩擦头材料进行低碳钢的搅拌摩擦焊试验。采用游标卡尺测量工具、X射线衍射仪和能谱仪等分析摩擦头在焊接过程中的主要失效形式。结果表明,YG8硬质合金摩擦头在低碳钢的搅拌摩擦焊过程中的主要失效形式为机械磨损、氧化剥落、搅拌针脆性断裂和轴肩变形失效等。引起失效的主要原因是摩擦头长时间的高温高压摩擦,导致粘结相Co分布不均匀或部分扩散流失,严重破坏了硬质合金的骨架模型;失效后摩擦头组织中出现了游离碳和硬脆相Co6W6C,减弱粘结相Co对基体相碳化钨的固溶强化作用,最终导致摩擦头的硬度、强度和耐磨性等下降。  相似文献   

2.
Tools used for hot forging are subject to simultaneously acting process-related high mechanical, tribological, chemical and thermal cyclic loads. In comparison to other manufacturing methods, the resulting load spectrum leads to a failure of the form-giving tool components after a short tool life. Wear is the main reason for die failure in hot forging processes, accounting for 70?% of all causes. Other kinds of failures are thermal and mechanical cracks as well as plastic deformation (a result of the loss of hardness due to the high thermal charge). In order to reduce wear, several kinds of wear reducing methods are subject of industrial applications as well as research works. For example, nitriding and optional thin hard coating or overlay welding are effective methods to increase the wear resistance of hot forging dies. Beside the process related stresses during the service, manufacturing of forging tools itself initializes microstructural changes in their subsurface zones. During fabrication, the general influence of the fabrication method on the tool lifetime has not been considered so far. The implementation of the knowledge of this influence into the fabrication process could lead to an increased productivity of hot forging processes without using expensive and complex wear reducing methods.  相似文献   

3.
Hypereutectic aluminium silicon alloys, e.g. casted AlSi17Cu4Mg, are commonly used in the automotive and aeronautical industries. These alloys consist of hard, abrasive silicon particles in a soft aluminium matrix and thus place high mechanical loads on the tool during machining processes. Polycrystalline Diamond or CVD (chemical vapour deposition) diamond based cutting tools can be used for the high speed machining of these alloys due to their high hardness and wear resistance. Diamond thin film coatings of different film morphologies are commonly applied on cemented carbide tools using Hot Filament CVD. The distinguishing characteristic to other coatings is utmost hardness resulting in high resistance to abrasion, low tendency to adhesion and low friction coefficient. The manufacturing of CVD diamond coated shaft type cutting tools is challenging due to the complex design of the cutting edges and the demanding stress behaviour during tool application. The influencing parameters of substrate type, chemical and mechanical substrate pre-treatment as well as diamond film modification on the tool cutting performance are discussed. The manufacturing route of CVD diamond coated thread milling drills is analysed with the use of material and tribological tests. The complex thread manufacturing tools are then applied in the machining of AlSi17Cu4Mg, whereby the tool performance is characterised with respect to their wear behaviour, the process forces and temperatures as well as the workpiece quality.  相似文献   

4.
目的 提高机械零部件表面的润滑性能.方法 以45钢为基体,采用电火花沉积技术在表面上间隔沉积出条状的石墨与硬质合金涂层条,用HSR-2M型高速往复摩擦磨损试验机对所制备的条状涂层进行相关的摩擦磨损试验,使用SEM和EDS并对涂层的表面形貌、截面形貌以及组成成分进行研究,分析了不同因素对石墨-硬质合金自润滑涂层摩擦磨损性能的影响规律及磨损机理.结果 涂层表面致密,且厚度均匀,在与对偶件摩擦时表现出良好的自润滑性能及耐磨性能.随着硬质合金涂层所占面积比从10%上升到40%时,涂层的润滑性能会降低,耐磨性提高,但随着往复摩擦频率的增加,接触表面温度升高,变形阻力下降,自润滑性能有所提升.当往复摩擦频率为500次/min时,摩擦因数最小.结论 石墨-硬质合金自润滑涂层的耐磨性和润滑性能与硬质合金在涂层区域中所占面积比及往复摩擦频率有关.主要是因为往复摩擦频率的增加会使磨粒的刻划作用增强,而硬质合金所占面积比会使涂层的硬度、耐磨性增加,涂层的主要磨损形式表现为磨粒磨损.  相似文献   

5.
采用光学显微镜、扫描电镜、电子探针及X射线衍射分析钨极氩弧堆焊碳化铬增强Ni3Al基复合堆焊层的组织结构,并采用销盘式干摩擦磨损试验机对堆焊层与活塞环用蠕墨铸铁材料的干摩擦磨损性能进行试验比较.结果表明,复合堆焊层内形成Ni3Al金属间化合物基体,其中弥散分布有大量细小的块状和条状碳化物硬质相Cr3C2和Cr7C3;焊接时焊丝中Cr3C2颗粒溶解析出,重新析出的碳化铬颗粒中包含Fe和Ni元素,碳化铬颗粒与Ni3Al基体形成良好的冶金结合;弥散分布的碳化铬颗粒和Ni3Al基体固溶强化的Cr元素决定了堆焊层具有较高的硬度.室温条件下,复合堆焊层具有优异的耐干摩擦磨损性能,其摩擦系数为0.23,远低于活塞环蠕墨铸铁的0.39;磨损率仅为蠕墨铸铁材料的43%.  相似文献   

6.
目的提升低温钢的摩擦磨损性能,为极地特殊船板的焊补和延寿技术提供试验依据。方法利用等离子转移弧技术,在低温钢E32表面堆焊制备3组球形不同碳化钨含量的钴基涂层,比较该改性涂层和E32钢在低温条件下(–20℃)的摩擦磨损性能。通过X射线衍射仪、扫描电子显微镜、能谱分析仪、3D光学轮廓仪等研究手段,分析碳化钨含量对堆焊层耐磨损性能和显微组织的影响规律,并揭示其耐磨损机理。结果在载荷为50 N、滑动速度为20 mm/s条件下,经2 h干滑动摩擦磨损后,3组涂层较低温钢E32的摩擦系数和体积磨损率均下降,磨痕的宽度和深度均变小。富含WC、W2C增强相以及Cr23C6、Cr7C3、Co6W6C和Fe6W6C等碳化物硬质相的涂层,显著提升了E32钢的硬度和低温耐磨性。涂层的低温耐磨性能随着碳化钨含量的增大而提高,未添加碳化钨的涂层的主要磨损机理为磨粒磨损和粘着磨损,当碳化钨的质量分数为30%和60%时,主要磨损机理为三体磨粒磨损。结论通过在E32钢表面进行等离子转移弧堆焊,得到了结构致密、高硬度和抗低温耐磨性的球形碳化钨增强钴基表面改性涂层,在一定程度上提升了低温钢的服役寿命。  相似文献   

7.
为提高化学镀镀层的耐磨性和耐腐蚀性,采用化学镀制备含不同粒径的纳米金刚石Ni-P-D复合镀层,通过SEM、XRD、摩擦磨损试验、磨粒磨损试验和电化学试验,探究纳米金刚石粒径对Ni-P镀层微观形貌、力学性能、摩擦磨损性能、磨粒磨损性能和耐腐蚀性能的影响。经化学复合镀可以得到与基体结合良好,厚度约为30 μm,含纳米金刚石的Ni-P-D复合镀层;含50 nm 金刚石的Ni-P-D复合镀层的硬度最高,抗摩擦磨损和磨粒磨损性能最好;随着纳米金刚石粒径减小,Ni-P-D复合镀层的摩擦系数和抗腐蚀能力提高,含5 nm金刚石的Ni-P-D复合镀层的摩擦系数最小,抗腐蚀能力最强。   相似文献   

8.
目的采用无熔滴电弧热丝GTAW堆焊技术,在Q235钢表面堆焊具有自润滑功能的含石墨相耐磨合金。方法设计含有镍包石墨粉的药芯焊丝,并使用无熔滴电弧热丝GTAW堆焊技术和传统GMAW两种方法进行对比堆焊。焊后,采用销盘式摩擦磨损试验机对堆焊层进行对比摩擦磨损性能测试,利用光学显微镜、SEM和EDS研究堆焊层的微观结构及成分,并对磨损面形貌进行对比分析,探究自研焊接系统制备含石墨相堆焊层的工艺特点和堆焊层自润滑耐磨性能。结果无熔滴电弧热丝GTAW可以有效降低母材的稀释率,保证药芯焊丝自润滑石墨相过渡,且能提高熔敷率。堆焊层形成了Fe-Cr-B耐磨基体,并在晶界处分布大量的颗粒状石墨相。摩擦磨损实验中,堆焊层摩擦系数可低至约0.65,随着摩擦时间的延长,摩擦系数进一步减小,磨损面未发现典型犁沟,表面平滑且呈黑色,堆焊层具有自润滑功能,且摩擦系数与焊接参数有关。传统GMAW方法制备的堆焊层的摩擦系数为1.4左右,且随着磨损时间的延长,摩擦系数略有增大。结论无熔滴电弧热丝GTAW堆焊技术低热输入和高熔敷率的工艺特点适合堆焊,尤其适合防止焊丝化学成分烧损的堆焊。在合理控制工艺参数,焊接稳定的前提下,选择低辅助电流,可以成功制备含石墨相的自润滑耐磨堆焊层。  相似文献   

9.
In this paper, in situ synthesized TiC particles reinforced Fe-based surface composite coatings by multi-pass overlapping gas tungsten arc welding (GTAW) melting process employing a proper amount of graphite and ferrotitanium (FeTi) on AISI 1020 steel substrate was produced. The microstructure and wear properties of the composite coatings were investigated by means of an electron microprobe microanalysis (EPMA), X-ray diffractometer and wear tester. The results showed that the multi-pass overlapping GTAW melting surface composite coatings can be obtained under suitable welding parameters, and no crack and porosity are found in the tracks. The X-ray and EPMA results confirm that TiC particles can be formed via reaction of FeTi and graphite during multi-pass overlapping GTAW melting process. TiC particles present cubic and dendrite shape in the non-overlapping zone. It is found that there occurred TiC particles coarsening at the overlap regions, which can lead to detrimental effects on the hardness and wear performance. Composite coatings give a high hardness and excellent wear resistance; and the wear friction coefficient of the coating is less than that of the 1020 steel. As a result, multi-pass overlapping GTAW melting process can be used effectively for producing surface composite coatings with a pre-placed powder to improve wear resistance of the AISI 1020 steel.  相似文献   

10.
The constitution and mechanical characteristics of the composites containing silicon carbide and Ni-P alloy matrix produced by electroless co-deposition were investigated in this article. The experimental results indicate that SiC particles with high hardness obviously strengthen the Ni-P alloy matrix, leading to an increase in both the hardness and surface roughness of the composites in comparison with pure Ni-P alloy. The hardness of the composites reaches the maximum value when heat treated at 673 K for 1 h. During the friction and wear process, the wear resistance of SiC composites is higher than that of Ni-P alloy and hard chromium plating, although the friction coefficient of the composite is comparatively high, which is attributed to the worn-resistant hard phase.  相似文献   

11.
采用机械搅拌与高能超声处理法制备了纳米SiC颗粒(n-SiCp)增强的镁基复合材料,探讨了基体及其复合材料的干滑动摩擦磨损行为。结果表明:由于纳米颗粒的强化作用,复合材料的耐磨性能要明显的强于基体,随着载荷的增加,基体和复合材料的磨损率线性增加,在磨损过程中,基体和复合材料经过磨合磨损和稳态磨损两个阶段。通过对磨损表面的显微分析发现,磨损机制主要是粘着磨损、磨粒磨损和剥层磨损,载荷大小对磨损机制有重要影响。  相似文献   

12.
The near surface area of forging dies is exposed to high mechanical loads. Additionally thermal and chemical stresses appear during the hot forging process. Depending on the number of forged parts, several kinds of stresses occur in the near surface area, which lead to the initial failures of forging dies. Wear is the main reason for production downtimes with a ratio of 70%. Furthermore, thermal and mechanical cracks are typical causes for failures causes as well as plastic deformation. In order to reduce wear, the abrasion resistance of the forging die surface has to be increased. Hence, different methods like plasma nitriding and optional additional thin hard coatings (TiN, TiCN, TiC, TiBN and TiB2) were successfully examined. Recently developed Ti–B–N coatings in specific multilayer designs are thermally stable, wear-resistant and anti-adhesive regarding the sticking of work piece material. This paper presents the wear reduction possibilities of boron-containing multilayer coating systems applied to forging dies by using the plasma enhanced chemical vapor deposition treatment. A basic mechanical and analytical characterization of different coating systems is realized in the first stage of the project. Best qualified multilayer coating variants were applied to forging dies for experimental investigations. As a result of the tests, wear can be reduced significantly by using thermally stable boron multilayer coatings. To receive realistic wear values under production conditions, an automated forging process was used for testing. After 3,000 forged parts, the coatings were examined by tactile measurement, SEM and EDX analyses to characterize the occurring wear.  相似文献   

13.
以SiC材质成型舟皿作为模具,尺寸为2~5 mm的YG8型WC硬质合金颗粒为耐磨相,CuZnNi合金为胎体金属,加入NiCrBSi合金粉末以提高胎体金属的Ni含量与Cr含量,采用钼丝氢气炉烧结制备高Ni钎料-WC硬质合金颗粒复合堆焊焊条,并对成型后焊条的断面形貌及胎体金属成分进行分析.结果 表明,硬质合金颗粒在焊条内呈...  相似文献   

14.
使用25 Hz振动频率、2 mm振幅、100 MPa摩擦压力和150 MPa顶锻压力的工艺参数对GH4169合金和S31042钢进行线性摩擦焊连接,通过OM、SEM和TEM分析异质接头的组织特征,并进行拉伸、硬度和蠕变实验测试异质接头在室温和高温环境下的力学性能。结果表明,GH4169合金与S31042钢的连接界面在线性摩擦焊过程中发生动态再结晶,形成无孔无裂纹的冶金结合,同时焊缝区在高温和应力作用下形成大量弥散分布的强化相颗粒。通过细晶强化和析出强化的综合作用,异质接头的抗拉强度高于S31042钢,焊缝区的硬度明显高于2种母材。  相似文献   

15.
The abrasive wear resistance of tribologically stressed free-formed surfaces can be increased with thermally sprayed tungsten carbide coatings. In order to improve the surface topographies and shape accuracies, the workpieces must be finished prior to industrial application. A suitable machining process is NC grinding on five-axis machining centres using abrasive mounted points. However, the high hardness of the applied coatings and the small diameter of the utilized tools pose a great challenge for the process design. In this paper both, the results of fundamental investigations on the grinding of tungsten carbide coatings as well as a process optimization for the finishing of a coated forming tool are presented. This includes the heat transfer into the coating and the tool wear during the grinding process as well as the wear behaviour of the coating in dependence of the generated surface topography. In order to achieve a smooth surface, elastic-bonded diamond tools were used during polishing in a multi-stage machining process.  相似文献   

16.
Physical vapour deposition (PVD) coatings have been well established in the cutting tool industry for many years. In the near future the high wear resistance and low friction coefficient of PVD coatings will be of interest for applications in constructional elements. Today the deposition process and the quality control of coated parts are accompanied by several problems: during the deposition process the temperature of the constructional elements must not exceed 200 °C; the composition of the deposited layers has to be reproducible; methods for the quality control of coated parts need to be integrated in series control. These problems will be discussed for reactively sputtered metal-carbon layers (W-C:H). Methods of quality control such as Rockwell C indentation and glow discharge optical spectrometry will be illustrated. First applications of W-C layers in the automotive industry are presented.  相似文献   

17.
目的制备高硬度、高耐磨性、自润滑及高热稳定性的AlCrBN/AlCrSiN纳米晶多层复合涂层,探索涂层的微观结构、力学性能、耐磨性能及高温热稳定性能。方法采用多弧离子镀技术在WC-Co硬质合金以及不锈钢基底上,制备AlCrBN/AlCrSiN多层纳米晶复合涂层。采用扫描电子显微镜、X射线衍射、透射电子显微镜、纳米压痕仪等设备,对涂层在不同温度(600~1000℃)下退火前后的表面形貌、微观结构、力学性能、耐磨性能进行系统研究。结果AlCrSiN/AlCrBN涂层为典型的纳米晶复合多层结构,涂层主要由fcc-AlCrN纳米晶镶嵌在非晶的SiNx和BNx中并形成多层结构。涂层具有优异的热稳定性能,其结构能够保持到800℃不发生变化,当温度增加到900℃时,涂层发生调幅分解,形成c-AlN、hcp-AlN和Cr2N等复合结构,在1000℃退火后,涂层结构基本稳定,仍能检测到CrN相。涂层纳米硬度及平均摩擦因数分别为29.15 GPa和0.67。结论AlCrSiN/AlCrBN涂层具有优异的力学性能、耐磨性能及高温热稳定性能,在800℃以下保持稳定,在1000℃退火后仍能保持较高的硬度及良好的耐磨性能,在高速切削刀具中具有良好的应用前景。  相似文献   

18.
Poly Crystalline Boron Nitride (PCBN) tool wear during the friction stir welding of high melting alloys is an obstacle to commercialize the process. This work simulates the friction stir welding process and tool wear during the plunge/dwell period of 14.8 mm EH46 thick plate steel. The Computational Fluid Dynamic (CFD) model was used for simulation and the wear of the tool is estimated from temperatures and shear stress profile on the tool surface. Two sets of tool rotational speeds were applied including 120 and 200 RPM. Seven plunge/dwell samples were prepared using PCBN FSW tool, six thermocouples were also embedded around each plunge/dwell case in order to record the temperatures during the welding process. Infinite focus microscopy technique was used to create macrographs for each case. The CFD result has been shown that a shear layer around the tool shoulder and probe-side denoted as thermo-mechanical affected zone (TMAZ) was formed and its size increase with tool rotational speed increase. Maximum peak temperature was also found to increase with tool rotational speed increase. PCBN tool wear under shoulder was found to increase with tool rotational speed increase as a result of tool’s binder softening after reaching to a peak temperature exceeds 1250 °C. Tool wear also found to increase at probe-side bottom as a result of high shear stress associated with the decrease in the tool rotational speed. The amount of BN particles revealed by SEM in the TMAZ were compared with the CFD model.  相似文献   

19.
重载条件下机械装备螺栓联结界面摩擦性能不足极易导致失效行为。为探究表面处理对螺栓联结界面摩擦与抗滑移性能的作用效果,提高界面摩擦性能,首先观测分析喷砂、喷砂喷漆、不同尺寸波浪纹织构的表面参数,然后采用摩擦磨损试验分析不同表面的摩擦磨损规律,并对其滑移过程进行仿真分析。结果表明:喷砂表面的摩擦因数最大,抗滑移性能最好,但耐磨性不如波浪纹织构表面;喷砂喷漆表面主要由固化剂与锌粉颗粒组成,硬度极低,且表面存在大量微裂纹,导致耐磨性较差;波浪纹织构表面的耐磨性较好,且其摩擦因数可达到与喷砂喷漆表面相近的水平。因此,在存在重载、循环载荷的应用场合,可考虑用波浪纹织构对联结界面进行处理,在保证其摩擦因数的同时增加耐磨性。提出一种耐磨、摩擦因数大的波浪纹织构表面,对增强螺栓联结界面摩擦性能具有指导意义。  相似文献   

20.
Abstract

Conventional friction stir welding (FSW) of high strength and high melting point materials, such as steel and titanium, has the disadvantages of a serious tool wear problem and slow welding speed. A new friction stir welding process for such materials called 'electrically enhanced friction stir welding process (EHFSW)' has been suggested and analysed using finite element modelling. The basic idea of EHFSW is that electric current passes from the welding tool into the workpiece through the contact area in the welding region. Thus it results in more localised heating while welding is in progress and is not simply a preheating process. The temperature distribution in the workpiece during the pin plunge stage and the welding stage of the EHFSW process has been determined. The results show that EHFSW can reduce the plunge force significantly with the help of localised electrical heating during the pin plunge stage, which may imply lower tool wear when compared with conventional FSW. At the same time, in the welding stage, the simulation results indicate that the welding speed of the EHFSW process can be at least two times faster than that of the conventional FSW process. Thus, finite element analysis shows that EHFSW is a promising process and could reduce tool wear while improving the welding speed, especially for high melting/O point materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号