共查询到19条相似文献,搜索用时 78 毫秒
1.
以KMnO4为氧化剂,以NaHSO2为阴离子还原剂制备了超级电容器用MnO2.运用N2吸附、SEM和XRD对氧化锰进行了形貌和结构表征.通过循环伏安和恒流充放电测试研究了氧化锰的电化学性能.结果表明:实验制备的MnO2为无定型结构,粒径为20~40nm,比表面积为155.4m2·g-1.在1mol·L-1的(NH4)2SO4溶液中,在-0.4~0.5V(vs SCE)的电位范围内表现出典型的法拉第赝电容行为,电流密度为10mA·cm-2时,其比容达到325 F·g-1. 相似文献
2.
3.
通过液相法制备了α相和γ相组成的纤维状:MnO2电极材料,并以琼脂为基体,通过聚丙烯酰胺(PAM)改性,制备了新型超级电容器隔膜材料。当PAM含量达到800ppm时,改性琼脂膜的吸液率与保液率分别为400.1%和335.1%,且隔膜韧性也得到改善。应用此隔膜的:MnO2/C超级电容器放电比容量可达23.4F/cm^3,比琼脂膜提高了49%,此时ESR仅为54mΩ,同时千次循环容量衰减幅度仅为10%。 相似文献
4.
5.
采用液相沉淀法在碳纳米管(CNTs)的表面沉积MnO2纳米颗粒,制得了MnO2-CNTs复合材料。通过扫描电子显微镜(SEM)、X射线衍射(XRD)对材料的微观结构及成分进行了表征。利用电化学循环伏安和恒电流充放电对材料进行电化学性能测试,表明MnO2-CNTs复合材料结合了MnO2较高的质量比电容和CNTs较好的电化学稳定性的优点,质量比电容为220F/g。并将MnO2-CNTs复合材料与活性炭(AC)组装形成非对称超级电容器,发现MnO2-CNTs与AC质量比为0.75:1时,质量比电容达到最高,为306F/g。非对称电容器性能较对称电容器有较大幅度的提高,并且具有良好的电化学稳定性。 相似文献
6.
以Na2S2O3为还原剂,KMnO4为氧化剂制备了超级电容器用MnO2,采用SEM、N2吸附-脱附和XRD对样品进行了分析.用循环伏安和恒流充放电测试对样品的电化学性能进行了表征.结果表明,实验制备的MnO2为无定型结构,呈类球状,直径为20~40nm,比表面积和平均孔径分别为182.6m2/g和6.2nm.在1mol/L (NH4)2SO4水溶液中,在-0.4~0.5V(vs.SCE)的电位范围内,MnO2具有典型的赝电容特性和高功率特性.在10mA/cm2的电流密度下,MnO2比容达到397F/g,且具有高循环效率. 相似文献
7.
以间苯二酚(R)和甲醛(F)为原料,碳酸钠(C)为催化剂,制备碳气凝胶(CRF),并以KMnO4和Mn(CH3COO)2·4H2O为原料,采用了化学沉淀法制备MnO2/CRF复合材料.用N2吸附、X射线衍射(XRD)和扫描电镜(SEM)对所制备的MnO2、CRF和MnO2/CRF复合材料进行了表征,结果表明碳气凝胶具有珍珠串式的无序多孔网络结构,所制备的MnO2为纳米级颗粒,复合材料为纳米级粉体.并对不同配比的MnO2/CRF复合材料的电化学性能进行了研究.循环伏安、恒流充放电实验表明了所制备的MnO2/CRF复合电极材料具有良好的可逆性和充放电性能.当MnO2含量为60%时,MnO2与碳气凝胶复合制成的新型电极材料具有226.3F/g的比电容,比碳气凝胶电极的比电容提高了1倍.此外,对复合电极的循环寿命进行了研究,表明复合电极具有良好的循环充放电性能. 相似文献
9.
碳纳米管在超级电容器中的应用研究进展 总被引:6,自引:4,他引:6
超级电容器是近年来发展起来的一种新型储能装置。碳纳米管由于具有独特的中空结构,良好的导电性和高的比表面积,被认为是超级电容器理想的电极材料之一,引起了广泛的关注。通过介绍碳纳米管在超级电容器中的应用研究进展,评述了碳纳米管、活化碳纳米管、碳纳米管/金属氧化物复合物以及碳纳米管/导电聚合物复合物用做超级电容器电极材料的特点和性能。认为单纯的碳纳米管由于比表面积小,比容量偏低。化学活化可以显著提高碳纳米管的比表面积,增大其比电容。将碳纳米管与准电容材料金属氧化物或导电聚合物复合。可以发挥各自的优势,从而得到低成本、高性能的复合电极材料,将是今后发展的一个方向。 相似文献
10.
碳纳米管与活性炭超级离子电容器的频率响应 总被引:6,自引:3,他引:6
分别采用碳纳米管和活性炭作用超级离子电容器的电极材料,应用交流阻抗频谱法,研究了两类超级离子电容器的频率响应特性。结果表明,用碳纳米管作电极,超级离子电容器地频率250mHz以下出现“电荷饱和”;而用活性炭作电极,超级离子电容器在频率为100mHz时仍未出现“电荷饱和”,说明碳纳米管超级离子电容器的频率响应特性优于活性炭超级离子电容器的频率响应特性,但是上述两类超级离子电容器的频率响应特性均比传统介质电容器的频率响应特性差。 相似文献
11.
MnO2对多壁碳纳米管的包覆与表面改性研究 总被引:3,自引:0,他引:3
利用高锰酸钾(KMnO4)在分散有多壁碳纳米管的硝酸溶液作用下分解,控制反应条件,在多壁碳纳米管上原位生成并包覆了颗粒状和丝状两种不同形貌的MnO3.通过XPS对反应产物进行了验证,利用TEM对碳纳米管包覆前后的形貌进行了表征,并对反应机理进行了初步探讨. 相似文献
12.
13.
《Journal of Experimental Nanoscience》2013,8(4):399-408
Synthesis and growth of carbon nanotubes (CNTs) from C2H2 by thermal chemical vapour deposition (TCVD) using a mixture of different gases were investigated. A thin film of nickel was coated as catalyst on silicon substrates by ion beam sputtering technique. Various parameters such as thickness of oxide layer and time, as well as reduction temperature were investigated in view of obtaining the best conditions for CNTs growth. C2H2 was very effective as carbon feedstock and NH3 pretreatments were crucial steps towards obtaining a high density of nucleation sites for CNTs growth by inhibiting amorphous carbon generation in the initial stage of the synthesis. The substrate oxide layer was analysed by secondary ion mass spectrometry. The prepared CNTs were confirmed by Raman spectroscopy and were further characterised using scanning electron microscopy and transmission electron microscopy. 相似文献
14.
15.
采用化学气相沉积(CVD)法在碳纤维(CF)表面原位生长碳纳米管(CNTs)。考察了不同催化剂、沉积温度、氢气流量以及样品距进气口距离等工艺参数对CNTs-CF生长的影响。利用SEM和高分辨透射电子显微镜(HRTEM)对CNTs-CF形貌和微结构进行了表征和分析。结果表明:在CF表面原位生长的CNTs为多壁结构,其中以Ni为催化剂得到的CNTs直径小、分布均匀;在600~750℃温度范围内,随着温度的升高,CNTs直径和长度减小,产量降低;随着氢气流量的增加,CNTs直径和长度均增加;距进气口30cm,在CF表面得到的CNTs覆盖率高、直径小且分布窄,有利于制备高质量CNTs。 相似文献
16.
Duong TT Nguyen QD Hong SK Kim D Yoon SG Pham TH 《Advanced materials (Deerfield Beach, Fla.)》2011,23(46):5557-5562
High-resolution transmission electron microscopy (HRTEM) is used to observe a TiO2/ITO-coated composite nanostructure grown onto single-walled carbon nanotubes (SWCNTs). The SWCNTs, indium tin oxide (ITO), and TiO2 mixtures of anatase (A) and rutile (R) are clearly distinguished in the HRTEM images. The thickness of the SWCNT was about 3 nm, and the TiO2 shell included different polycrystalline structures. 相似文献
17.
The growth direction, morphology and microstructure of carbon nanotubes (CNTs) play key roles for their potential applications in electronic and energy storage devices. However, effective synthesis of CNTs in high crystallinity and desired microstructure still remains a tremendous challenge. Here we introduce an electric field for controlling the microstructure formation of CNTs. It reveals that the electric field not only make CNTs aligned parallel but also improve the density of CNTs. Especially, the microstructures of CNTs gradually change under electrical field. That is, graphite sheets are transformed from the “herringbone” structure to a highly crystalline structure, facilitating the transportation of electrons. Due to the improved aligned growth direction, high density and highly crystalline microstructure, the electrochemical performance of CNTs is greatly improved. When the CNTs are applied in supercapacitors, they present a high specific capacitance of 237 F/g, three times higher than that of the CNTs prepared without electrical field. Such microstructure modulation of CNTs by electric field would help to construct high performance electronic and energy storage devices. 相似文献
18.
无定型氧化锰超级电容器电极材料 总被引:9,自引:0,他引:9
采用化学共沉淀法制备超级电容器用氧化锰电极材料,借助X射线衍射(XRD)、扫描电子显微镜(SEM)、红外光谱(FT-IR)和BET比表面积分析手段对样品进行表征。结果表明,产物为无定型结构,粒径分布较均匀,约在40~50nm,BET比表面积达到160.5m^2/g。在0.5mol/LK2SO4水溶液中,电位窗口为0~0.8V(vs.SCE)内,通过循环伏安和恒流充放电测试,显示该材料制备的电极具有良好的电容行为和功率特性。在扫描速度为4mV/s时,单电极的比容量达到140F/g。 相似文献
19.
《Advanced Powder Technology》2022,33(2):103445
In this paper, we report the first-ever study on a relatively uniform dispersion of multi-walled carbon nanotubes (MWCNTs) in CuAlS2 nanoparticles, synthesized by high-energy ball-milling, and study the thermoelectric properties of the bulk materials. A vortex mixer and bath sonicator are used to achieve well dispersion of nanotubes in the matrix, and then the powder is hot-pressed. Carbon nanotubes dispersed in the matrix improve electrical conductivity and Seebeck coefficient. The addition of MWCNT causes an increase in the grain boundary and facilitates phonon scattering, resulting in a reduction in the lattice thermal conductivity and finally total thermal conductivity. The optimum amount of carbon nanotubes is effective for reducing thermal conductivity and increasing electrical conductivity, thereby elevating the figure-of-merit of the nanocomposites. Finally, the figure-of-merit is highly influenced by total thermal conductivity, and the maximum figure-of-merit was obtained for CuAlS2/0.5 wt% MWCNT composite, which indicated about 20% improvement. 相似文献